355 research outputs found

    The Lov\'asz Hinge: A Novel Convex Surrogate for Submodular Losses

    Get PDF
    Learning with non-modular losses is an important problem when sets of predictions are made simultaneously. The main tools for constructing convex surrogate loss functions for set prediction are margin rescaling and slack rescaling. In this work, we show that these strategies lead to tight convex surrogates iff the underlying loss function is increasing in the number of incorrect predictions. However, gradient or cutting-plane computation for these functions is NP-hard for non-supermodular loss functions. We propose instead a novel surrogate loss function for submodular losses, the Lov\'asz hinge, which leads to O(p log p) complexity with O(p) oracle accesses to the loss function to compute a gradient or cutting-plane. We prove that the Lov\'asz hinge is convex and yields an extension. As a result, we have developed the first tractable convex surrogates in the literature for submodular losses. We demonstrate the utility of this novel convex surrogate through several set prediction tasks, including on the PASCAL VOC and Microsoft COCO datasets

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

    Full text link
    We investigate the approximability of several classes of real-valued functions by functions of a small number of variables ({\em juntas}). Our main results are tight bounds on the number of variables required to approximate a function f:{0,1}n[0,1]f:\{0,1\}^n \rightarrow [0,1] within 2\ell_2-error ϵ\epsilon over the uniform distribution: 1. If ff is submodular, then it is ϵ\epsilon-close to a function of O(1ϵ2log1ϵ)O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}) variables. This is an exponential improvement over previously known results. We note that Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) variables are necessary even for linear functions. 2. If ff is fractionally subadditive (XOS) it is ϵ\epsilon-close to a function of 2O(1/ϵ2)2^{O(1/\epsilon^2)} variables. This result holds for all functions with low total 1\ell_1-influence and is a real-valued analogue of Friedgut's theorem for boolean functions. We show that 2Ω(1/ϵ)2^{\Omega(1/\epsilon)} variables are necessary even for XOS functions. As applications of these results, we provide learning algorithms over the uniform distribution. For XOS functions, we give a PAC learning algorithm that runs in time 2poly(1/ϵ)poly(n)2^{poly(1/\epsilon)} poly(n). For submodular functions we give an algorithm in the more demanding PMAC learning model (Balcan and Harvey, 2011) which requires a multiplicative 1+γ1+\gamma factor approximation with probability at least 1ϵ1-\epsilon over the target distribution. Our uniform distribution algorithm runs in time 2poly(1/(γϵ))poly(n)2^{poly(1/(\gamma\epsilon))} poly(n). This is the first algorithm in the PMAC model that over the uniform distribution can achieve a constant approximation factor arbitrarily close to 1 for all submodular functions. As follows from the lower bounds in (Feldman et al., 2013) both of these algorithms are close to optimal. We also give applications for proper learning, testing and agnostic learning with value queries of these classes.Comment: Extended abstract appears in proceedings of FOCS 201

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul

    On additive approximate submodularity

    Get PDF
    A real-valued set function is (additively) approximately submodular if it satisfies the submodularity conditions with an additive error. Approximate submodularity arises in many settings, especially in machine learning, where the function evaluation might not be exact. In this paper we study how close such approximately submodular functions are to truly submodular functions. We show that an approximately submodular function defined on a ground set of n elements is pointwise-close to a submodular function. This result also provides an algorithmic tool that can be used to adapt existing submodular optimization algorithms to approximately submodular functions. To complement, we show an lower bound on the distance to submodularity. These results stand in contrast to the case of approximate modularity, where the distance to modularity is a constant, and approximate convexity, where the distance to convexity is logarithmic
    corecore