17,548 research outputs found

    Transferable Positive/Negative Speech Emotion Recognition via Class-wise Adversarial Domain Adaptation

    Get PDF
    Speech emotion recognition plays an important role in building more intelligent and human-like agents. Due to the difficulty of collecting speech emotional data, an increasingly popular solution is leveraging a related and rich source corpus to help address the target corpus. However, domain shift between the corpora poses a serious challenge, making domain shift adaptation difficult to function even on the recognition of positive/negative emotions. In this work, we propose class-wise adversarial domain adaptation to address this challenge by reducing the shift for all classes between different corpora. Experiments on the well-known corpora EMODB and Aibo demonstrate that our method is effective even when only a very limited number of target labeled examples are provided.Comment: 5 pages, 3 figures, accepted to ICASSP 201

    Shape Consistent 2D Keypoint Estimation under Domain Shift

    Full text link
    Recent unsupervised domain adaptation methods based on deep architectures have shown remarkable performance not only in traditional classification tasks but also in more complex problems involving structured predictions (e.g. semantic segmentation, depth estimation). Following this trend, in this paper we present a novel deep adaptation framework for estimating keypoints under domain shift}, i.e. when the training (source) and the test (target) images significantly differ in terms of visual appearance. Our method seamlessly combines three different components: feature alignment, adversarial training and self-supervision. Specifically, our deep architecture leverages from domain-specific distribution alignment layers to perform target adaptation at the feature level. Furthermore, a novel loss is proposed which combines an adversarial term for ensuring aligned predictions in the output space and a geometric consistency term which guarantees coherent predictions between a target sample and its perturbed version. Our extensive experimental evaluation conducted on three publicly available benchmarks shows that our approach outperforms state-of-the-art domain adaptation methods in the 2D keypoint prediction task
    • …
    corecore