1,567 research outputs found

    gTFRC: a QoS-aware congestion control algorithm

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this paper describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC) originally proposed in [11]. The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow's RTT and target rate. Simulation measurements show the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Application-Level QoS: Improving video conferencing quality through sending the best packet next

    Get PDF
    In a traditional network stack, data from an application is transmitted in the order that it is received. An algorithm is proposed where information about the priority of packets and expiry times is used by the transport layer to reorder or discard packets at the time of transmission to optimise the use of available bandwidth. This can be used for video conferencing to prioritise important data. This scheme is implemented and compared to unmodified datagram congestion control protocol (DCCP). This algorithm is implemented as an interface to DCCP and tested using traffic modelled on video conferencing software. The results show improvement can be made to video conferencing during periods of congestion - substantially more audio packets arrive on time with the algorithm, which leads to higher quality video conferencing. In many cases video packet arrival rate also increases and adopting the algorithm gives improvements to video conferencing that are better than using unmodified queuing for DCCP. The algorithm proposed is implemented on the server only, so benefits can be obtained on the client without changes being required to the client

    The Role of Responsive Pricing in the Internet

    Get PDF
    The Internet continues to evolve as it reaches out to a wider user population. The recent introduction of user-friendly navigation and retrieval tools for the World Wide Web has triggered an unprecedented level of interest in the Internet among the media and the general public, as well as in the technical community. It seems inevitable that some changes or additions are needed in the control mechanisms used to allocate usage of Internet resources. In this paper, we argue that a feedback signal in the form of a variable price for network service is a workable tool to aid network operators in controlling Internet traffic. We suggest that these prices should vary dynamically based on the current utilization of network resources. We show how this responsive pricing puts control of network service back where it belongs: with the users.Internet, pricing, feedback, networks

    Region of interest-based adaptive multimedia streaming scheme

    Get PDF
    Adaptive multimedia streaming aims at adjusting the transmitted content based on the available bandwidth such as losses that often severely affect the end-user perceived quality are minimized and consequently the transmission quality increases. Current solutions affect equally the whole viewing area of the multimedia frames, despite research showing that there are regions on which the viewers are more interested in than on others. This paper presents a novel region of interest-based adaptive scheme (ROIAS) for multimedia streaming that when performing transmission-related quality adjustments, selectively affects the quality of those regions of the image the viewers are the least interested in. As the quality of the regions the viewers are the most interested in will not change (or will involve little change),the proposed scheme provides higher overall end-user perceived quality than any of the existing adaptive solutions

    End-user traffic policing for QoS assurance in polyservice RINA networks

    Get PDF
    Looking at the ever-increasing amount of heterogeneous distributed applications supported on current data transport networks, it seems evident that best-effort packet delivery falls short to supply their actual needs. Multiple approaches to Quality of Service (QoS) differentiation have been proposed over the years, but their usage has always been hindered by the rigidness of the TCP/IP-based Internet model, which does not even allow for applications to express their QoS needs to the underlying network. In this context, the Recursive InterNetwork Architecture (RINA) has appeared as a clean-slate network architecture aiming to replace the current Internet based on TCP/IP. RINA provides a well-defined QoS support across layers, with standard means for layers to inform of the different QoS guarantees that they can support. Besides, applications and other processes can express their flow requirements, including different QoS-related measures, like delay and jitter, drop probability or average traffic usage. Greedy end-users, however, tend to request the highest quality for their flows, forcing providers to apply intelligent data rate limitation procedures at the edge of their networks. In this work, we propose a new rate limiting policy that, instead of enforcing limits on a per QoS class basis, imposes limits on several independent QoS dimensions. This offers a flexible traffic control to RINA network providers, while enabling end-users freely managing their leased resources. The performance of the proposed policy is assessed in an experimental RINA network test-bed and its performance compared against other policies, either RINA-specific or adopted from TCP/IP. Results show that the proposed policy achieves an effective traffic control for high QoS traffic classes, while also letting lower QoS classes to take profit of the capacity initially reserved for the former ones when available.Peer ReviewedPostprint (author's final draft

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200
    corecore