54 research outputs found

    On subadditive duality for conic mixed-integer programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    On subadditive duality for conic mixed-integer programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    On Subadditive Duality for Conic Mixed-Integer Programs

    Get PDF
    In this paper, we show that the subadditive dual of a feasible conic mixed-integer program (MIP) is a strong dual whenever it is feasible. Moreover, we show that this dual feasibility condition is equivalent to feasibility of the conic dual of the continuous relaxation of the conic MIP. In addition, we prove that all known conditions and other 'natural' conditions for strong duality, such as strict mixed-integer feasibility, boundedness of the feasible set or essentially strict feasibility imply that the subadditive dual is feasible. As an intermediate result, we extend the so-called 'finiteness property' from full-dimensional convex sets to intersections of full-dimensional convex sets and Dirichlet convex sets

    On Minimal Valid Inequalities for Mixed Integer Conic Programs

    Full text link
    We study disjunctive conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull. We study the properties of K-minimal inequalities by establishing algebraic necessary conditions for an inequality to be K-minimal. This characterization leads to a broader algebraically defined class of K- sublinear inequalities. We establish a close connection between K-sublinear inequalities and the support functions of sets with a particular structure. This connection results in practical ways of showing that a given inequality is K-sublinear and K-minimal. Our framework generalizes some of the results from the mixed integer linear case. It is well known that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily recovered by our analysis. Whenever possible we highlight the connections to the existing literature. However, our study unveils that such a cut generating function view treating the data associated with each individual variable independently is not possible in the case of general cones other than nonnegative orthant, even when the cone involved is the Lorentz cone

    Optimality certificates for convex minimization and Helly numbers

    Full text link
    We consider the problem of minimizing a convex function over a subset of R^n that is not necessarily convex (minimization of a convex function over the integer points in a polytope is a special case). We define a family of duals for this problem and show that, under some natural conditions, strong duality holds for a dual problem in this family that is more restrictive than previously considered duals.Comment: 5 page

    Duality for mixed-integer convex minimization

    Get PDF
    We extend in two ways the standard Karush–Kuhn–Tucker optimality conditions to problems with a convex objective, convex functional constraints, and the extra requirement that some of the variables must be integral. While the standard Karush–Kuhn–Tucker conditions involve separating hyperplanes, our extension is based on mixed-integer-free polyhedra. Our optimality conditions allow us to define an exact dual of our original mixed-integer convex problem
    • …
    corecore