1,833 research outputs found

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    On the Tightness of Bounds for Transients of Weak CSR Expansions and Periodicity Transients of Critical Rows and Columns of Tropical Matrix Powers

    Get PDF
    We study the transients of matrices in max-plus algebra. Our approach is based on the weak CSR expansion. Using this expansion, the transient can be expressed by max{T1,T2}\max\{T_1,T_2\}, where T1T_1 is the weak CSR threshold and T2T_2 is the time after which the purely pseudoperiodic CSR terms start to dominate in the expansion. Various bounds have been derived for T1T_1 and T2T_2, naturally leading to the question which matrices, if any, attain these bounds. In the present paper we characterize the matrices attaining two particular bounds on T1T_1, which are generalizations of the bounds of Wielandt and Dulmage-Mendelsohn on the indices of non-weighted digraphs. This also leads to a characterization of tightness for the same bounds on the transients of critical rows and columns. The characterizations themselves are generalizations of those for the non-weighted case.Comment: 42 pages, 9 figure
    corecore