6,475 research outputs found

    Collective Dynamics of a Weakly Coupled Electrochemical Reaction on an Array

    Get PDF
    Experiments on the collective behavior and phase synchronization of weakly coupled populations of nonidentical chaotic electrochemical oscillators are described. The weak coupling has only a small effect on the local dynamics, i.e., through changes in frequency, but it has a strong influence on the collective or overall behavior. With added weak global or short-range coupling, a deviation from the law of large numbers is observed; large, irregular, and periodic mean-field oscillations occur, along with (partial) phase synchronization

    Cryptographic requirements for chaotic secure communications

    Get PDF
    In recent years, a great amount of secure communications systems based on chaotic synchronization have been published. Most of the proposed schemes fail to explain a number of features of fundamental importance to all cryptosystems, such as key definition, characterization, and generation. As a consequence, the proposed ciphers are difficult to realize in practice with a reasonable degree of security. Likewise, they are seldom accompanied by a security analysis. Thus, it is hard for the reader to have a hint about their security. In this work we provide a set of guidelines that every new cryptosystems would benefit from adhering to. The proposed guidelines address these two main gaps, i.e., correct key management and security analysis, to help new cryptosystems be presented in a more rigorous cryptographic way. Also some recommendations are offered regarding some practical aspects of communications, such as channel noise, limited bandwith, and attenuation.Comment: 13 pages, 3 figure

    Neuronal synchrony: peculiarity and generality

    Get PDF
    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their “dynamical repertoire” includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale

    Synchronizing noisy nonidentical oscillators by transient uncoupling

    Full text link
    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them -- a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling

    Violation of hyperbolicity via unstable dimension variability in a chain with local hyperbolic chaotic attractors

    Full text link
    We consider a chain of oscillators with hyperbolic chaos coupled via diffusion. When the coupling is strong the chain is synchronized and demonstrates hyperbolic chaos so that there is one positive Lyapunov exponent. With the decay of the coupling the second and the third Lyapunov exponents approach zero simultaneously. The second one becomes positive, while the third one remains close to zero. Its finite-time numerical approximation fluctuates changing the sign within a wide range of the coupling parameter. These fluctuations arise due to the unstable dimension variability which is known to be the source for non-hyperbolicity. We provide a detailed study of this transition using the methods of Lyapunov analysis.Comment: 24 pages, 13 figure
    • …
    corecore