3,533 research outputs found

    Secluded Connectivity Problems

    Full text link
    Consider a setting where possibly sensitive information sent over a path in a network is visible to every {neighbor} of the path, i.e., every neighbor of some node on the path, thus including the nodes on the path itself. The exposure of a path PP can be measured as the number of nodes adjacent to it, denoted by N[P]N[P]. A path is said to be secluded if its exposure is small. A similar measure can be applied to other connected subgraphs, such as Steiner trees connecting a given set of terminals. Such subgraphs may be relevant due to considerations of privacy, security or revenue maximization. This paper considers problems related to minimum exposure connectivity structures such as paths and Steiner trees. It is shown that on unweighted undirected nn-node graphs, the problem of finding the minimum exposure path connecting a given pair of vertices is strongly inapproximable, i.e., hard to approximate within a factor of O(2log1ϵn)O(2^{\log^{1-\epsilon}n}) for any ϵ>0\epsilon>0 (under an appropriate complexity assumption), but is approximable with ratio Δ+3\sqrt{\Delta}+3, where Δ\Delta is the maximum degree in the graph. One of our main results concerns the class of bounded-degree graphs, which is shown to exhibit the following interesting dichotomy. On the one hand, the minimum exposure path problem is NP-hard on node-weighted or directed bounded-degree graphs (even when the maximum degree is 4). On the other hand, we present a polynomial algorithm (based on a nontrivial dynamic program) for the problem on unweighted undirected bounded-degree graphs. Likewise, the problem is shown to be polynomial also for the class of (weighted or unweighted) bounded-treewidth graphs

    Connectivity-splitting models for survivable network design

    Get PDF
    "January 2000." Title from cover.Includes bibliographical references (p. 24-25).by T.L. Magnanti, A. Balakrishnan, P. Mirchandani

    Strong Formulations for Network Design Problems with Connectivity Requirements

    Get PDF
    The network design problem with connectivity requirements (NDC) models a wide variety of celebrated combinatorial optimization problems including the minimum spanning tree, Steiner tree, and survivable network design problems. We develop strong formulations for two versions of the edge-connectivity NDC problem: unitary problems requiring connected network designs, and nonunitary problems permitting non-connected networks as solutions. We (i) present a new directed formulation for the unitary NDC problem that is stronger than a natural undirected formulation, (ii) project out several classes of valid inequalities-partition inequalities, odd-hole inequalities, and combinatorial design inequalities-that generalize known classes of valid inequalities for the Steiner tree problem to the unitary NDC problem, and (iii) show how to strengthen and direct nonunitary problems. Our results provide a unifying framework for strengthening formulations for NDC problems, and demonstrate the strength and power of flow-based formulations for network design problems with connectivity requirements

    Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    Full text link
    We consider circuit routing with an objective of minimizing energy, in a network of routers that are speed scalable and that may be shutdown when idle. We consider both multicast routing and unicast routing. It is known that this energy minimization problem can be reduced to a capacitated flow network design problem, where vertices have a common capacity but arbitrary costs, and the goal is to choose a minimum cost collection of vertices whose induced subgraph will support the specified flow requirements. For the multicast (single-sink) capacitated design problem we give a polynomial-time algorithm that is O(log^3n)-approximate with O(log^4 n) congestion. This translates back to a O(log ^(4{\alpha}+3) n)-approximation for the multicast energy-minimization routing problem, where {\alpha} is the polynomial exponent in the dynamic power used by a router. For the unicast (multicommodity) capacitated design problem we give a polynomial-time algorithm that is O(log^5 n)-approximate with O(log^12 n) congestion, which translates back to a O(log^(12{\alpha}+5) n)-approximation for the unicast energy-minimization routing problem.Comment: 22 pages (full version of STOC 2014 paper
    corecore