16 research outputs found

    On Steane-Enlargement of Quantum Codes from Cartesian Product Point Sets

    Get PDF
    In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. in [4]. We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert-Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.Comment: 12 page

    Quantum Codes and Multiparty Computation:A Coding Theoretic Approach

    Get PDF

    Stabilizer quantum codes from JJ-affine variety codes and a new Steane-like enlargement

    Get PDF
    New stabilizer codes with parameters better than the ones available in the literature are provided in this work, in particular quantum codes with parameters [[127,63,≥12]]2[[127,63, \geq 12]]_2 and [[63,45,≥6]]4[[63,45, \geq 6]]_4 that are records. These codes are constructed with a new generalization of the Steane's enlargement procedure and by considering orthogonal subfield-subcodes --with respect to the Euclidean and Hermitian inner product-- of a new family of linear codes, the JJ-affine variety codes

    New Quantum Codes from Evaluation and Matrix-Product Codes

    Get PDF
    Stabilizer codes obtained via CSS code construction and Steane's enlargement of subfield-subcodes and matrix-product codes coming from generalized Reed-Muller, hyperbolic and affine variety codes are studied. Stabilizer codes with good quantum parameters are supplied, in particular, some binary codes of lengths 127 and 128 improve the parameters of the codes in http://www.codetables.de. Moreover, non-binary codes are presented either with parameters better than or equal to the quantum codes obtained from BCH codes by La Guardia or with lengths that can not be reached by them

    Quantum Error-Control Codes

    Full text link
    The article surveys quantum error control, focusing on quantum stabilizer codes, stressing on the how to use classical codes to design good quantum codes. It is to appear as a book chapter in "A Concise Encyclopedia of Coding Theory," edited by C. Huffman, P. Sole and J-L Kim, to be published by CRC Press

    New binary and ternary LCD codes

    Get PDF
    LCD codes are linear codes with important cryptographic applications. Recently, a method has been presented to transform any linear code into an LCD code with the same parameters when it is supported on a finite field with cardinality larger than 3. Hence, the study of LCD codes is mainly open for binary and ternary fields. Subfield-subcodes of JJ-affine variety codes are a generalization of BCH codes which have been successfully used for constructing good quantum codes. We describe binary and ternary LCD codes constructed as subfield-subcodes of JJ-affine variety codes and provide some new and good LCD codes coming from this construction

    On nested code pairs from the Hermitian curve

    Full text link
    Nested code pairs play a crucial role in the construction of ramp secret sharing schemes [Kurihara et al. 2012] and in the CSS construction of quantum codes [Ketkar et al. 2006]. The important parameters are (1) the codimension, (2) the relative minimum distance of the codes, and (3) the relative minimum distance of the dual set of codes. Given values for two of them, one aims at finding a set of nested codes having parameters with these values and with the remaining parameter being as large as possible. In this work we study nested codes from the Hermitian curve. For not too small codimension, we present improved constructions and provide closed formula estimates on their performance. For small codimension we show how to choose pairs of one-point algebraic geometric codes in such a way that one of the relative minimum distances is larger than the corresponding non-relative minimum distance.Comment: 28 page

    Subfield subcodes of projective Reed-Muller codes

    Full text link
    Explicit bases for the subfield subcodes of projective Reed-Muller codes over the projective plane and their duals are obtained. In particular, we provide a formula for the dimension of these codes. For the general case over the projective space, we are able to generalize the necessary tools to deal with this case as well: we obtain a universal Gr\"obner basis for the vanishing ideal of the set of standard representatives of the projective space and we are able to reduce any monomial with respect to this Gr\"obner basis. With respect to the parameters of these codes, by considering subfield subcodes of projective Reed-Muller codes we are able to obtain long linear codes with good parameters over a small finite field

    Quantum stabilizer codes and beyond

    Get PDF
    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.Comment: Ph.D. Dissertation, Texas A&M University, 200

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder
    corecore