1,122 research outputs found

    Rehearsal: A Configuration Verification Tool for Puppet

    Full text link
    Large-scale data centers and cloud computing have turned system configuration into a challenging problem. Several widely-publicized outages have been blamed not on software bugs, but on configuration bugs. To cope, thousands of organizations use system configuration languages to manage their computing infrastructure. Of these, Puppet is the most widely used with thousands of paying customers and many more open-source users. The heart of Puppet is a domain-specific language that describes the state of a system. Puppet already performs some basic static checks, but they only prevent a narrow range of errors. Furthermore, testing is ineffective because many errors are only triggered under specific machine states that are difficult to predict and reproduce. With several examples, we show that a key problem with Puppet is that configurations can be non-deterministic. This paper presents Rehearsal, a verification tool for Puppet configurations. Rehearsal implements a sound, complete, and scalable determinacy analysis for Puppet. To develop it, we (1) present a formal semantics for Puppet, (2) use several analyses to shrink our models to a tractable size, and (3) frame determinism-checking as decidable formulas for an SMT solver. Rehearsal then leverages the determinacy analysis to check other important properties, such as idempotency. Finally, we apply Rehearsal to several real-world Puppet configurations.Comment: In proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 201

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    A DevOps approach to integration of software components in an EU research project

    Get PDF
    We present a description of the development and deployment infrastructure being created to support the integration effort of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project intended to bring the power of heterogeneous resources to the cloud. It consists of a number of different services and technologies that interact with the OpenStack cloud computing platform at various levels. Many of these components are being developed independently by different teams at different locations across Europe, and keeping the work fully integrated is a challenge. We use a combination of Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide a consistent and up-to-date environment to each developer. The same playbooks used to configure local virtual machines are also used to manage a static testbed with heterogeneous compute and storage devices, and to automate ephemeral larger-scale deployments to Grid5000. Access to internal projects is managed by GitLab, and automated testing of services within Docker-based environments and integrated deployments within virtual-machines is provided by Buildbot

    Detecting and Characterizing Propagation of Security Weaknesses in Puppet-based Infrastructure Management

    Full text link
    Despite being beneficial for managing computing infrastructure automatically, Puppet manifests are susceptible to security weaknesses, e.g., hard-coded secrets and use of weak cryptography algorithms. Adequate mitigation of security weaknesses in Puppet manifests is thus necessary to secure computing infrastructure that are managed with Puppet manifests. A characterization of how security weaknesses propagate and affect Puppet-based infrastructure management, can inform practitioners on the relevance of the detected security weaknesses, as well as help them take necessary actions for mitigation. To that end, we conduct an empirical study with 17,629 Puppet manifests mined from 336 open source repositories. We construct Taint Tracker for Puppet Manifests (TaintPup), for which we observe 2.4 times more precision compared to that of a state-of-the-art security static analysis tool. TaintPup leverages Puppet-specific information flow analysis using which we characterize propagation of security weaknesses. From our empirical study, we observe security weaknesses to propagate into 4,457 resources, i.e, Puppet-specific code elements used to manage infrastructure. A single instance of a security weakness can propagate into as many as 35 distinct resources. We observe security weaknesses to propagate into 7 categories of resources, which include resources used to manage continuous integration servers and network controllers. According to our survey with 24 practitioners, propagation of security weaknesses into data storage-related resources is rated to have the most severe impact for Puppet-based infrastructure management.Comment: 14 pages, currently under revie
    corecore