3,686 research outputs found

    Mixed-Signal Neural Network Implementation with Programmable Neuron

    Get PDF
    This thesis introduces implementation of mixed-signal building blocks of an artificial neural network; namely the neuron and the synaptic multiplier. This thesis, also, investigates the nonlinear dynamic behavior of a single artificial neuron and presents a Distributed Arithmetic (DA)-based Finite Impulse Response (FIR) filter. All the introduced structures are designed and custom laid out

    Investigations in the design and analysis of key-stream generators

    Get PDF
    iv+113hlm.;24c

    Analysis, simulation and design of nonlinear RF circuits

    Get PDF
    The PhD project consists of two parts. The first part concerns the development of Computer Aided Design (CAD) algorithms for high-frequency circuits. Novel PadΓ©based algorithms for numerical integration of ODEs as arise in high-frequency circuits are proposed. Both single- and multi-step methods are introduced. A large part of this section of the research is concerned with the application of Filon-type integration techniques to circuits subject to modulated signals. Such methods are tested with analog and digital modulated signals and are seen to be very effective. The results confirm that these methods are more accurate than the traditional trapezoidal rule and Runge-Kutta methods. The second part of the research is concerned with the analysis, simulation and design of RF circuits with emphasis on injection-locked frequency dividers (ILFD) and digital delta-sigma modulators (DDSM). Both of these circuits are employed in fractional-N frequency synthesizers. Several simulation methods are proposed to capture the locking range of an ILFD, such as the Warped Multi-time Partial Differential Equation (WaMPDE) and the Multiple-Phase-Condition Envelope Following (MPCENV) methods. The MPCENV method is the more efficient and accurate simulation technique and it is recommended to obviate the need for expensive experiments. The Multi-stAge noise Shaping (MASH) digital delta-sigma modulator (DDSM) is simulated in MATLAB and analysed mathematically. A novel structure employing multimoduli, termed the MM-MASH, is proposed. The goal in this design work is to reduce the noise level in the useful frequency band of the modulator. The success of the novel structure in achieving this aim is confirmed with simulations

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Exploiting parallelism within multidimensional multirate digital signal processing systems

    Get PDF
    The intense requirements for high processing rates of multidimensional Digital Signal Processing systems in practical applications justify the Application Specific Integrated Circuits designs and parallel processing implementations. In this dissertation, we propose novel theories, methodologies and architectures in designing high-performance VLSI implementations for general multidimensional multirate Digital Signal Processing systems by exploiting the parallelism within those applications. To systematically exploit the parallelism within the multidimensional multirate DSP algorithms, we develop novel transformations including (1) nonlinear I/O data space transforms, (2) intercalation transforms, and (3) multidimensional multirate unfolding transforms. These transformations are applied to the algorithms leading to systematic methodologies in high-performance architectural designs. With the novel design methodologies, we develop several architectures with parallel and distributed processing features for implementing multidimensional multirate applications. Experimental results have shown that those architectures are much more efficient in terms of execution time and/or hardware cost compared with existing hardware implementations

    Основи схСмотСхніки Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… систСм

    Get PDF
    Basics of circuitry are stated, principles of operation are considered, it is given calculations of analog, digital and pulse devices of electronic systems, based on semiconductor devices, integrated operational amplifiers and integrated logic circuits of TTL, MOS, CMOS types, construction principles of systems of control by electronics devices based on microprocessors and microcontrollers. For students of institutions of higher education. It can be useful for specialists on electronic engineering, specializing in the area of development, fabrication and maintenance of electronic systems and devices
    • …
    corecore