5,203 research outputs found

    Effects of Finite Deformed Length in Carbon Nanotubes

    Full text link
    The effect of finite deformed length is demonstrated by squashing an armchair (10,10) single-walled carbon nanotube with two finite tips. Only when the deformed length is long enough, an effectual metal-semiconductor-metal heterojunction can be formed in the metallic tube. The effect of finite deformed length is explained by the quantum tunnelling effect. Furthermore, some conceptual designs of nanoscale devices are proposed from the metal-semiconductor-metal heterojunction.Comment: 4 pages, 4 figure

    Analysis of ultrasonic transducers with fractal architecture

    Get PDF
    Ultrasonic transducers composed of a periodic piezoelectric composite are generally accepted as the design of choice in many applications. Their architecture is normally very regular and this is due to manufacturing constraints rather than performance optimisation. Many of these manufacturing restrictions no longer hold due to new production methods such as computer controlled, laser cutting, and so there is now freedom to investigate new types of geometry. In this paper, the plane wave expansion model is utilised to investigate the behaviour of a transducer with a self-similar architecture. The Cantor set is utilised to design a 2-2 conguration, and a 1-3 conguration is investigated with a Sierpinski Carpet geometry

    Control speculation for energy-efficient next-generation superscalar processors

    Get PDF
    Conventional front-end designs attempt to maximize the number of "in-flight" instructions in the pipeline. However, branch mispredictions cause the processor to fetch useless instructions that are eventually squashed, increasing front-end energy and issue queue utilization and, thus, wasting around 30 percent of the power dissipated by a processor. Furthermore, processor design trends lead to increasing clock frequencies by lengthening the pipeline, which puts more pressure on the branch prediction engine since branches take longer to be resolved. As next-generation high-performance processors become deeply pipelined, the amount of wasted energy due to misspeculated instructions will go up. The aim of this work is to reduce the energy consumption of misspeculated instructions. We propose selective throttling, which triggers different power-aware techniques (fetch throttling, decode throttling, or disabling the selection logic) depending on the branch prediction confidence level. Results show that combining fetch-bandwidth reduction along with select-logic disabling provides the best performance in terms of overall energy reduction and energy-delay product improvement (14 percent and 10 percent, respectively, for a processor with a 22-stage pipeline and 16 percent and 13 percent, respectively, for a processor with a 42-stage pipeline).Peer ReviewedPostprint (published version

    LSTM with Working Memory

    Full text link
    Previous RNN architectures have largely been superseded by LSTM, or "Long Short-Term Memory". Since its introduction, there have been many variations on this simple design. However, it is still widely used and we are not aware of a gated-RNN architecture that outperforms LSTM in a broad sense while still being as simple and efficient. In this paper we propose a modified LSTM-like architecture. Our architecture is still simple and achieves better performance on the tasks that we tested on. We also introduce a new RNN performance benchmark that uses the handwritten digits and stresses several important network capabilities.Comment: Accepted at IJCNN 201

    Higher Order Multipole Analysis for 952.6 Mhz Superconducting Crabbing Cavities for Jefferson Lab Electron-Ion Collider

    Get PDF
    The proposed electron ion collider at Jefferson Lab requires a crabbing cavity system to increase the luminosity in the colliding beams. Currently several superconducting crabbing cavity designs are being reviewed as the design option for the crabbing cavity. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system, in selecting the design that meets the design specifications. The multipole components can be accurately determined numerically using the electromagnetic field data in the rf structure. This paper discusses the detailed analysis of higher order multipole components for the operating crabbing mode and design modifications in reducing those components
    • …
    corecore