335 research outputs found

    Forbidding intersection patterns between layers of the cube

    Get PDF
    A family AP[n]{\mathcal A} \subset {\mathcal P} [n] is said to be an antichain if A⊄BA \not \subset B for all distinct A,BAA,B \in {\mathcal A}. A classic result of Sperner shows that such families satisfy A(nn/2)|{\mathcal A}| \leq \binom {n}{\lfloor n/2\rfloor}, which is easily seen to be best possible. One can view the antichain condition as a restriction on the intersection sizes between sets in different layers of P[n]{\mathcal P} [n]. More generally one can ask, given a collection of intersection restrictions between the layers, how large can families respecting these restrictions be? Answering a question of Kalai, we show that for most collections of such restrictions, layered families are asymptotically largest. This extends results of Leader and the author.Comment: 16 page

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    Supersaturation and stability for forbidden subposet problems

    Get PDF
    We address a supersaturation problem in the context of forbidden subposets. A family F\mathcal{F} of sets is said to contain the poset PP if there is an injection i:PFi:P \rightarrow \mathcal{F} such that pPqp \le_P q implies i(p)i(q)i(p) \subset i (q). The poset on four elements a,b,c,da,b,c,d with a,bc,da,b \le c,d is called butterfly. The maximum size of a family F2[n]\mathcal{F} \subseteq 2^{[n]} that does not contain a butterfly is Σ(n,2)=(nn/2)+(nn/2+1)\Sigma(n,2)=\binom{n}{\lfloor n/2 \rfloor}+\binom{n}{\lfloor n/2 \rfloor+1} as proved by De Bonis, Katona, and Swanepoel. We prove that if F2[n]\mathcal{F} \subseteq 2^{[n]} contains Σ(n,2)+E\Sigma(n,2)+E sets, then it has to contain at least (1o(1))E(n/2+1)(n/22)(1-o(1))E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2} copies of the butterfly provided E2n1εE\le 2^{n^{1-\varepsilon}} for some positive ε\varepsilon. We show by a construction that this is asymptotically tight and for small values of EE we show that the minimum number of butterflies contained in F\mathcal{F} is exactly E(n/2+1)(n/22)E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2}
    corecore