14,477 research outputs found

    Spectral characterizations of complex unit gain graphs

    Get PDF
    While eigenvalues of graphs are well studied, spectral analysis of complex unit gain graphs is still in its infancy. This thesis considers gain graphs whose gain groups are gradually less and less restricted, with the ultimate goal of classifying gain graphs that are characterized by their spectra. In such cases, the eigenvalues of a gain graph contain sufficient structural information that it might be uniquely (up to certain equivalence relations) constructed when only given its spectrum. First, the first infinite family of directed graphs that is – up to isomorphism – determined by its Hermitian spectrum is obtained. Since the entries of the Hermitian adjacency matrix are complex units, these objects may be thought of as gain graphs with a restricted gain group. It is shown that directed graphs with the desired property are extremely rare. Thereafter, the perspective is generalized to include signs on the edges. By encoding the various edge-vertex incidence relations with sixth roots of unity, the above perspective can again be taken. With an interesting mix of algebraic and combinatorial techniques, all signed directed graphs with degree at most 4 or least multiplicity at most 3 are determined. Subsequently, these characterizations are used to obtain signed directed graphs that are determined by their spectra. Finally, an extensive discussion of complex unit gain graphs in their most general form is offered. After exploring their various notions of symmetry and many interesting ties to complex geometries, gain graphs with exactly two distinct eigenvalues are classified

    Applications of Structural Balance in Signed Social Networks

    Full text link
    We present measures, models and link prediction algorithms based on the structural balance in signed social networks. Certain social networks contain, in addition to the usual 'friend' links, 'enemy' links. These networks are called signed social networks. A classical and major concept for signed social networks is that of structural balance, i.e., the tendency of triangles to be 'balanced' towards including an even number of negative edges, such as friend-friend-friend and friend-enemy-enemy triangles. In this article, we introduce several new signed network analysis methods that exploit structural balance for measuring partial balance, for finding communities of people based on balance, for drawing signed social networks, and for solving the problem of link prediction. Notably, the introduced methods are based on the signed graph Laplacian and on the concept of signed resistance distances. We evaluate our methods on a collection of four signed social network datasets.Comment: 37 page

    SNE: Signed Network Embedding

    Full text link
    Several network embedding models have been developed for unsigned networks. However, these models based on skip-gram cannot be applied to signed networks because they can only deal with one type of link. In this paper, we present our signed network embedding model called SNE. Our SNE adopts the log-bilinear model, uses node representations of all nodes along a given path, and further incorporates two signed-type vectors to capture the positive or negative relationship of each edge along the path. We conduct two experiments, node classification and link prediction, on both directed and undirected signed networks and compare with four baselines including a matrix factorization method and three state-of-the-art unsigned network embedding models. The experimental results demonstrate the effectiveness of our signed network embedding.Comment: To appear in PAKDD 201
    • …
    corecore