17 research outputs found

    Bipartite Ramsey Numbers and Zarankiewicz Numbers

    Get PDF
    The bipartite Ramsey number b(m, n) is the minimum b such that any 2-coloring of Kb,b results in a monochromatic Km,m subgraph in the first color or a monochromatic Kn,n subgraph in the second color. The Zarankiewicz number z(m, n; s, t) is the maximum size among Ks,t-free subgraphs of Km,n. In this work, we discuss the intimate relationship between the two numbers as well as propose a new method for bounding the Zarankiewicz numbers. We use the better bounds to improve the upper bound on b(2, 5), in addition we improve the lower bound of b(2, 5) by construction. The new bounds are shown to be 17 ≤ b(2, 5) ≤ 18. Additionally, we apply the same methods to the multicolor case b(2, 2, 3) which has previously not been studied and determine bounds to be 16 ≤ b(2, 2, 3) ≤ 23

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Generation of Graph Classes with Efficient Isomorph Rejection

    No full text
    In this thesis, efficient isomorph-free generation of graph classes with the method of generation by canonical construction path(GCCP) is discussed. The method GCCP has been invented by McKay in the 1980s. It is a general method to recursively generate combinatorial objects avoiding isomorphic copies. In the introduction chapter, the method of GCCP is discussed and is compared to other well-known methods of generation. The generation of the class of quartic graphs is used as an example to explain this method. Quartic graphs are simple regular graphs of degree four. The programs, we developed based on GCCP, generate quartic graphs with 18 vertices more than two times as efficiently as the well-known software GENREG does. This thesis also demonstrates how the class of principal graph pairs can be generated exhaustively in an efficient way using the method of GCCP. The definition and importance of principal graph pairs come from the theory of subfactors where each subfactor can be modelled as a principal graph pair. The theory of subfactors has applications in the theory of von Neumann algebras, operator algebras, quantum algebras and Knot theory as well as in design of quantum computers. While it was initially expected that the classification at index 3 + √5 would be very complicated, using GCCP to exhaustively generate principal graph pairs was critical in completing the classification of small index subfactors to index 5¼. The other set of classes of graphs considered in this thesis contains graphs without a given set of cycles. For a given set of graphs, H, the Turán Number of H, ex(n,H), is defined to be the maximum number of edges in a graph on n vertices without a subgraph isomorphic to any graph in H. Denote by EX(n,H), the set of all extremal graphs with respect to n and H, i.e., graphs with n vertices, ex(n,H) edges and no subgraph isomorphic to any graph in H. We consider this problem when H is a set of cycles. New results for ex(n, C) and EX(n, C) are introduced using a set of algorithms based on the method of GCCP. Let K be an arbitrary subset of {C3, C4, C5, . . . , C32}. For given n and a set of cycles, C, these algorithms can be used to calculate ex(n, C) and extremal graphs in Ex(n, C) by recursively extending smaller graphs without any cycle in C where C = K or C = {C3, C5, C7, . . .} ᴜ K and n≤64. These results are considerably in excess of the previous results of the many researchers who worked on similar problems. In the last chapter, a new class of canonical relabellings for graphs, hierarchical canonical labelling, is introduced in which if the vertices of a graph, G, is canonically labelled by {1, . . . , n}, then G\{n} is also canonically labelled. An efficient hierarchical canonical labelling is presented and the application of this labelling in generation of combinatorial objects is discussed
    corecore