5,720 research outputs found

    Pseudorandom number generation based on controllable cellular automata

    Get PDF
    A novel Cellular Automata (CA) Controllable CA (CCA) is proposed in this paper. Further, CCA are applied in Pseudorandom Number Generation. Randomness test results on CCA Pseudorandom Number Generators (PRNGs) show that they are better than 1-d CA PRNGs and can be comparable to 2-d ones. But they do not lose the structure simplicity of 1-d CA. Further, we develop several different types of CCA PRNGs. Based on the comparison of the randomness of different CCA PRNGs, we find that their properties are decided by the actions of the controllable cells and their neighbors. These novel CCA may be applied in other applications where structure non-uniformity or asymmetry is desired

    Full Orbit Sequences in Affine Spaces via Fractional Jumps and Pseudorandom Number Generation

    Full text link
    Let nn be a positive integer. In this paper we provide a general theory to produce full orbit sequences in the affine nn-dimensional space over a finite field. For n=1n=1 our construction covers the case of the Inversive Congruential Generators (ICG). In addition, for n>1n>1 we show that the sequences produced using our construction are easier to compute than ICG sequences. Furthermore, we prove that they have the same discrepancy bounds as the ones constructed using the ICG.Comment: To appear in Mathematics of Computatio

    A Family of Controllable Cellular Automata for Pseudorandom Number Generation

    Get PDF
    In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups show that the randomness of the evolved groups is further improved compared with any individual CCA PRNG

    Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences

    Full text link
    Motivated by the known autocorrelation properties of the Rudin-Shapiro sequence, we study the discrete correlation among infinite sequences over a finite alphabet, where we just take into account whether two symbols are identical. We show by combinatorial means that sequences cannot be "too" different, and by an explicit construction generalizing the Rudin-Shapiro sequence, we show that we can achieve the maximum possible difference.Comment: Improved Introduction and new Section 6 (Lovasz local lemma
    corecore