15,922 research outputs found

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    Revisiting the Rice Theorem of Cellular Automata

    Full text link
    A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evolution. In this paper, we prove that all properties of limit sets of cellular automata with binary-state cells are undecidable, except surjectivity. This is a refinement of the classical "Rice Theorem" that Kari proved on cellular automata with arbitrary state sets.Comment: 12 pages conference STACS'1

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    Ternary reversible number-conserving cellular automata are trivial

    Get PDF

    Statistical Mechanics of Surjective Cellular Automata

    Get PDF
    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.Comment: 50 pages, 7 figure

    Topology Inspired Problems for Cellular Automata, and a Counterexample in Topology

    Full text link
    We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
    corecore