49,972 research outputs found

    New extended superconformal sigma models and Quaternion Kahler manifolds

    Full text link
    Quaternion Kahler manifolds are known to be the target spaces for matter hypermultiplets coupled to N=2 supergravity. It is also known that there is a one-to-one correspondence between 4n-dimensional quaternion Kahler manifolds and those 4(n+1)-dimensional hyperkahler spaces which are the target spaces for rigid superconformal hypermultiplets (such spaces are called hyperkahler cones). In this paper we present a projective-superspace construction to generate a hyperkahler cone M^{4(n+1)}_H of dimension 4(n+1) from a 2n-dimensional real analytic Kahler-Hodge manifold M^{2n}_K. The latter emerges as a maximal Kahler submanifold of the 4n-dimensional quaternion Kahler space M^{4n}_Q such that its Swann bundle coincides with M^{4(n+1)}_H. Our approach should be useful for the explicit construction of new quaternion Kahler metrics. The results obtained are also of interest, e.g., in the context of supergravity reduction N=2 --> N=1, or alternatively from the point of view of embedding N=1 matter-coupled supergravity into an N=2 theory.Comment: 30 page

    N = 2 supersymmetric sigma-models and duality

    Full text link
    For two families of four-dimensional off-shell N = 2 supersymmetric nonlinear sigma-models constructed originally in projective superspace, we develop their formulation in terms of N = 1 chiral superfields. Specifically, these theories are: (i) sigma-models on cotangent bundles T*M of arbitrary real analytic Kaehler manifolds M; (ii) general superconformal sigma-models described by weight-one polar supermultiplets. Using superspace techniques, we obtain a universal expression for the holomorphic symplectic two-form \omega^{(2,0)} which determines the second supersymmetry transformation and is associated with the two complex structures of the hyperkaehler space T*M that are complimentary to the one induced from M. This two-form is shown to coincide with the canonical holomorphic symplectic structure. In the case (ii), we demonstrate that \omega^{(2,0)} and the homothetic conformal Killing vector determine the explicit form of the superconformal transformations. At the heart of our construction is the duality (generalized Legendre transform) between off-shell N = 2 supersymmetric nonlinear sigma-models and their on-shell N = 1 chiral realizations. We finally present the most general N = 2 superconformal nonlinear sigma-model formulated in terms of N = 1 chiral superfields. The approach developed can naturally be generalized in order to describe 5D and 6D superconformal nonlinear sigma-models in 4D N = 1 superspace.Comment: 31 pages, no figures; V2: reference and comments added, typos corrected; V3: more typos corrected, published versio
    corecore