36,046 research outputs found

    On Solving Systems of Diagonal Polynomial Equations Over Finite Fields

    Get PDF
    We present an algorithm to solve a system of diagonal polynomial equations over finite fields when the number of variables is greater than some fixed polynomial of the number of equations whose degree depends only on the degree of the polynomial equations. Our algorithm works in time polynomial in the number of equations and the logarithm of the size of the field, whenever the degree of the polynomial equations is constant. As a consequence we design polynomial time quantum algorithms for two algebraic hidden structure problems: for the hidden subgroup problem in certain semidirect product p-groups of constant nilpotency class, and for the multi-dimensional univariate hidden polynomial graph problem when the degree of the polynomials is constant.Comment: A preliminary extended abstract of this paper has appeared in Proceedings of FAW 2015, Springer LNCS vol. 9130, pp. 125-137 (2015

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m1m\geq 1 nonlinear polynomials over K[x_1,,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3

    Factorizing the Stochastic Galerkin System

    Full text link
    Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right hand side depend on a set of parameters (e.g. a PDE with stochastic inputs semidiscretized in space) and examine the linear system arising from a similar Galerkin approximation of the solution. We derive a useful factorization of this system of equations, which yields bounds on the eigenvalues, clues to preconditioning, and a flexible implementation method for a wide array of problems. We complement this analysis with (i) a numerical study of preconditioners on a standard elliptic PDE test problem and (ii) a fluids application using existing CFD codes; the MATLAB codes used in the numerical studies are available online.Comment: 13 pages, 4 figures, 2 table

    Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

    Full text link
    Reed-Muller codes are some of the oldest and most widely studied error-correcting codes, of interest for both their algebraic structure as well as their many algorithmic properties. A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length nn and distance d=O(1)d = O(1), one can correct polylog(n)\operatorname{polylog}(n) random errors in poly(n)\operatorname{poly}(n) time (which is well beyond the worst-case error tolerance of O(1)O(1)). In this paper, we consider the problem of `syndrome decoding' Reed-Muller codes from random errors. More specifically, given the polylog(n)\operatorname{polylog}(n)-bit long syndrome vector of a codeword corrupted in polylog(n)\operatorname{polylog}(n) random coordinates, we would like to compute the locations of the codeword corruptions. This problem turns out to be equivalent to a basic question about computing tensor decomposition of random low-rank tensors over finite fields. Our main result is that syndrome decoding of Reed-Muller codes (and the equivalent tensor decomposition problem) can be solved efficiently, i.e., in polylog(n)\operatorname{polylog}(n) time. We give two algorithms for this problem: 1. The first algorithm is a finite field variant of a classical algorithm for tensor decomposition over real numbers due to Jennrich. This also gives an alternate proof for the main result of Saptharishi et al. 2. The second algorithm is obtained by implementing the steps of the Berlekamp-Welch-style decoding algorithm of Saptharishi et al. in sublinear-time. The main new ingredient is an algorithm for solving certain kinds of systems of polynomial equations.Comment: 24 page

    Solving the "Isomorphism of Polynomials with Two Secrets" Problem for all Pairs of Quadratic Forms

    Full text link
    We study the Isomorphism of Polynomial (IP2S) problem with m=2 homogeneous quadratic polynomials of n variables over a finite field of odd characteristic: given two quadratic polynomials (a, b) on n variables, we find two bijective linear maps (s,t) such that b=t . a . s. We give an algorithm computing s and t in time complexity O~(n^4) for all instances, and O~(n^3) in a dominant set of instances. The IP2S problem was introduced in cryptography by Patarin back in 1996. The special case of this problem when t is the identity is called the isomorphism with one secret (IP1S) problem. Generic algebraic equation solvers (for example using Gr\"obner bases) solve quite well random instances of the IP1S problem. For the particular cyclic instances of IP1S, a cubic-time algorithm was later given and explained in terms of pencils of quadratic forms over all finite fields; in particular, the cyclic IP1S problem in odd characteristic reduces to the computation of the square root of a matrix. We give here an algorithm solving all cases of the IP1S problem in odd characteristic using two new tools, the Kronecker form for a singular quadratic pencil, and the reduction of bilinear forms over a non-commutative algebra. Finally, we show that the second secret in the IP2S problem may be recovered in cubic time
    corecore