43,332 research outputs found

    Single machine scheduling problems with uncertain parameters and the OWA criterion

    Get PDF
    In this paper a class of single machine scheduling problems is discussed. It is assumed that job parameters, such as processing times, due dates, or weights are uncertain and their values are specified in the form of a discrete scenario set. The Ordered Weighted Averaging (OWA) aggregation operator is used to choose an optimal schedule. The OWA operator generalizes traditional criteria in decision making under uncertainty, such as the maximum, average, median or Hurwicz criterion. It also allows us to extend the robust approach to scheduling by taking into account various attitudes of decision makers towards the risk. In this paper a general framework for solving single machine scheduling problems with the OWA criterion is proposed and some positive and negative computational results for two basic single machine scheduling problems are provided

    Optimizing Ranking Measures for Compact Binary Code Learning

    Full text link
    Hashing has proven a valuable tool for large-scale information retrieval. Despite much success, existing hashing methods optimize over simple objectives such as the reconstruction error or graph Laplacian related loss functions, instead of the performance evaluation criteria of interest---multivariate performance measures such as the AUC and NDCG. Here we present a general framework (termed StructHash) that allows one to directly optimize multivariate performance measures. The resulting optimization problem can involve exponentially or infinitely many variables and constraints, which is more challenging than standard structured output learning. To solve the StructHash optimization problem, we use a combination of column generation and cutting-plane techniques. We demonstrate the generality of StructHash by applying it to ranking prediction and image retrieval, and show that it outperforms a few state-of-the-art hashing methods.Comment: Appearing in Proc. European Conference on Computer Vision 201
    • …
    corecore