11,290 research outputs found

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    Computational complexity of μ calculation

    Get PDF
    The structured singular value μ measures the robustness of uncertain systems. Numerous researchers over the last decade have worked on developing efficient methods for computing μ. This paper considers the complexity of calculating μ with general mixed real/complex uncertainty in the framework of combinatorial complexity theory. In particular, it is proved that the μ recognition problem with either pure real or mixed real/complex uncertainty is NP-hard. This strongly suggests that it is futile to pursue exact methods for calculating μ of general systems with pure real or mixed uncertainty for other than small problems

    The antitriangular factorisation of saddle point matrices

    Get PDF
    Mastronardi and Van Dooren recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorisation for saddle point matrices and demonstrate how it represents the common nullspace method. We show the relation of this factorisation to constraint preconditioning and how it transforms but preserves the block diagonal structure of block diagonal preconditioning

    Preconditioning and convergence in the right norm

    Get PDF
    The convergence of numerical approximations to the solutions of differential equations is a key aspect of Numerical Analysis and Scientific Computing. Iterative solution methods for the systems of linear(ised) equations which often result are also underpinned by analyses of convergence. In the function space setting, it is widely appreciated that there are appropriate ways in which to assess convergence and it is well-known that different norms are not equivalent. In the finite dimensional linear algebra setting, however, all norms are equivalent and little attention is often payed to the norms used. In this paper, we highlight this consideration in the context of preconditioning for minimum residual methods (MINRES and GMRES/GCR/ORTHOMIN) and argue that even in the linear algebra setting there is a ‘right’ norm in which to consider convergence: stopping an iteration which is rapidly converging in an irrelevant or highly scaled norm at some tolerance level may still give a poor answer

    On implicit-factorization constraint preconditioners

    Get PDF
    Recently Dollar and Wathen [14] proposed a class of incomplete factorizations for saddle-point problems, based upon earlier work by Schilders [40]. In this paper, we generalize this class of preconditioners, and examine the spectral implications of our approach. Numerical tests indicate the efficacy of our preconditioners

    Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

    Full text link
    We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set blocks are merged into the constraint blocks. We discuss the robustness of the new preconditioners with respect to the parameters of the continuous and discrete problems. Numerical experiments on 3D problems are presented, including comparisons with existing approaches based on preconditioned conjugate gradients in a nonstandard inner product

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201
    corecore