7,112 research outputs found

    On Smith predictor-based controller design for systems with integral action and time delay

    Get PDF
    A new Smith predictor based controller is proposed for systems with integral action and flexible modes under input-output time-delay. The design uses controller parametrization and aims to achieve a set of performance and robustness objectives. Compared to existing Smith predictor based designs, disturbance attenuation property is improved, with respect to periodic disturbances at a known frequency. A two-degree of freedom controller structure is shown to be helpful in shaping the transient response under constant reference inputs. Stability robustness properties of this system are also investigated. Simulation results demonstrate the effectiveness of the proposed controller. © 2013 IEEE

    Improved cascade control structure for enhanced performance

    Get PDF
    In conventional single feedback control, the corrective action for disturbances does not begin until the controlled variable deviates from the set point. In this case, a cascade control strategy can be used to improve the performance of a control system particularly in the presence of disturbances. In this paper, an improved cascade control structure and controller design based on standard forms, which was initially given by authors, is suggested to improve the performance of cascade control. Examples are given to illustrate the use of the proposed method and its superiority over some existing design methods

    Proportional-integral-plus (PIP) control of time delay systems

    Get PDF
    The paper shows that the digital proportional-integral-plus (PIP) controller formulated within the context of non-minimum state space (NMSS) control system design methodology is directly equivalent, under certain non-restrictive pole assignment conditions, to the equivalent digital Smith predictor (SP) control system for time delay systems. This allows SP controllers to be considered within the context of NMSS state variable feedback control, so that optimal design methods can be exploited to enhance the performance of the SP controller. Alternatively, since the PIP design strategy provides a more flexible approach, which subsumes the SP controller as one option, it provides a superior basis for general control system design. The paper also discusses the robustness and disturbance response characteristics of the two PIP control structures that emerge from the analysis and demonstrates the efficacy of the design methods through simulation examples and the design of a climate control system for a large horticultural glasshouse system

    Temperature control in transport delay systems

    Get PDF
    A control architecture is proposed for temperature control in manufacturing applications based on the internal model principle. It is applied to a problem where the material exit temperature is to be controlled by changing the transportation speed to influence the amount of heat loss. The internal model is used to achieve a fast response with minimal overshoot. The controller tuning is carried out using constraints on the sensitivity function to map out the controller parameter region to achieve this performance. The robustness of the controller to parametric uncertainty is also considered. Results are shown from the application of this controller to the temperature controller for a hot strip rolling mill

    Design of generalized minimum variance controllers for nonlinear multivariable systems

    Get PDF
    The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor

    Dead-Time compensators: A unified approach

    Get PDF
    IFAC Linear Time Delay Systems,Grenoble,France,1998This paper shows how most dead-time compensators can be considered as a particular case ofa proposed general control structure. The proposed structure can be tuned taking into account the performance and robustness ofthe closed-loop. The obtained controller is more general and allows better results than previous algorithms. In order to illustrate the results, some simulation examples are shown

    A Prediction approach to introduce dead-time process control in a basic control course

    Get PDF
    7TH IFAC SYMPOSIUM ON ADVANCES IN CONTROL EDUCATION. 21/06/2006. MADRIDThis paper presents a methodology to introduce the control of dead-time processes using a simple and intuitive predictive approach. A trivial solutionfor the control of a process with a dead-time is first proposed. From this strategythe idea of the predictor based controller is derived. Open-loop predictors andclosed-loop ones are then used to analyze the obtained solution. A simple tuningof the proposed structure for a first order plus dead-time process together with apolynomial approximation of the dead-time allows to derive apidcontroller. Thus,the approach based on the idea of prediction can be used to interpret the use of apidto control a dead-time process. It is illustrated how the performance of thepidcontroller is limited by the modelling error introduced in the approximation. Thepresented approach gives a measurement of the achievable performance. Severalsimulation examples illustrate the results.Ministerio de Ciencia y TecnologĂ­a DPI 2005-0456
    • 

    corecore