94,200 research outputs found

    Approximating Threshold Circuits by Rational Functions

    Get PDF
    AbstractMotivated by the problem of understanding the limitations of threshold networks for representing boolean functions, we consider size-depth trade-offs for threshold circuits that compute the parity function. Using a fundamental result in the theory of rational approximation, we show how to approximate small threshold circuits by rational functions of low degree. We apply this result to establish an almost optimal lower bound of Ω(n2/ln2n) on the number of edges of any depth-2 threshold circuit with polynomially bounded weights that computes the parity function. We also prove that any depth-3 threshold circuit with polynomially bounded weights requires Ω(n1.2/ln5/3n) edges to compute parity. On the other hand, we give a construction of a depth d threshold circuit that computes parity with n1+1/Θ(φd) edges where φ = (1 + √5)/2 is the golden ratio. We conjecture that there are no linear size bounded depth threshold circuits for computing parity

    Size, Depth and Energy of Threshold Circuits Computing Parity Function

    Get PDF
    We investigate relations among the size, depth and energy of threshold circuits computing the n-variable parity function PAR_n, where the energy is a complexity measure for sparsity on computation of threshold circuits, and is defined to be the maximum number of gates outputting "1" over all the input assignments. We show that PAR_n is hard for threshold circuits of small size, depth and energy: - If a depth-2 threshold circuit C of size s and energy e computes PAR_n, it holds that 2^{n/(elog ^e n)} ? s; and - if a threshold circuit C of size s, depth d and energy e computes PAR_n, it holds that 2^{n/(e2^{e+d}log ^e n)} ? s. We then provide several upper bounds: - PAR_n is computable by a depth-2 threshold circuit of size O(2^{n-2e}) and energy e; - PAR_n is computable by a depth-3 threshold circuit of size O(2^{n/(e-1)} + 2^{e-2}) and energy e; and - PAR_n is computable by a threshold circuit of size O((e+d)2^{n-m}), depth d + O(1) and energy e + O(1), where m = max (((e-1)/(d-1))^{d-1}, ((d-1)/(e-1))^{e-1}). Our lower and upper bounds imply that threshold circuits need exponential size if both depth and energy are constant, which contrasts with the fact that PAR_n is computable by a threshold circuit of size O(n) and depth 2 if there is no restriction on the energy. Our results also suggest that any threshold circuit computing the parity function needs depth to be sparse if its size is bounded

    Algorithms and Lower Bounds in Circuit Complexity

    Get PDF
    Computational complexity theory aims to understand what problems can be efficiently solved by computation. This thesis studies computational complexity in the model of Boolean circuits. Boolean circuits provide a basic mathematical model for computation and play a central role in complexity theory, with important applications in separations of complexity classes, algorithm design, and pseudorandom constructions. In this thesis, we investigate various types of circuit models such as threshold circuits, Boolean formulas, and their extensions, focusing on obtaining complexity-theoretic lower bounds and algorithmic upper bounds for these circuits. (1) Algorithms and lower bounds for generalized threshold circuits: We extend the study of linear threshold circuits, circuits with gates computing linear threshold functions, to the more powerful model of polynomial threshold circuits where the gates can compute polynomial threshold functions. We obtain hardness and meta-algorithmic results for this circuit model, including strong average-case lower bounds, satisfiability algorithms, and derandomization algorithms for constant-depth polynomial threshold circuits with super-linear wire complexity. (2) Algorithms and lower bounds for enhanced formulas: We investigate the model of Boolean formulas whose leaf gates can compute complex functions. In particular, we study De Morgan formulas whose leaf gates are functions with "low communication complexity". Such gates can capture a broad class of functions including symmetric functions and polynomial threshold functions. We obtain new and improved results in terms of lower bounds and meta-algorithms (satisfiability, derandomization, and learning) for such enhanced formulas. (3) Circuit lower bounds for MCSP: We study circuit lower bounds for the Minimum Circuit Size Problem (MCSP), the fundamental problem of deciding whether a given function (in the form of a truth table) can be computed by small circuits. We get new and improved lower bounds for MCSP that nearly match the best-known lower bounds against several well-studied circuit models such as Boolean formulas and constant-depth circuits

    Algebraic Techniques for Constructing Minimal Weight Threshold Functions

    Get PDF
    A linear threshold element computes a function that is a sign of a weighted sum of the input variables. The weights are arbitrary integers; actually, they can be very big integers- exponential in the number of the input variables. While in the present literature a distinction is made between the two extreme cases of linear threshold functions with polynomial-size weights as opposed to those with exponential-size weights, the best known lower bounds on the size of threshold circuits are for depth-2 circuits with small weights. Our main contributions are devising two distinct methods for constructing threshold functions with minimal weights and filling up the gap between polynomial and exponential weight growth by further refining the separation. Namely, we prove that the class of linear threshold functions with polynomial-size weights can be divided into subclasses according to the degree of the polynomial. In fact, we prove a more general result-that there exists a minimal weight linear threshold function for any arbitrary number of inputs and any weight size

    Improved Bounds for Quantified Derandomization of Constant-Depth Circuits and Polynomials

    Get PDF
    This work studies the question of quantified derandomization, which was introduced by Goldreich and Wigderson (STOC 2014). The generic quantified derandomization problem is the following: For a circuit class cal{C} and a parameter B=B(n), given a circuit C in cal{C} with n input bits, decide whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work we consider three settings for this question. In each setting, we bring closer the parameter setting for which we can unconditionally construct relatively fast quantified derandomization algorithms, and the "threshold" values (for the parameters) for which any quantified derandomization algorithm implies a similar algorithm for standard derandomization. For constant-depth circuits, we construct an algorithm for quantified derandomization that works for a parameter B(n) that is only slightly smaller than a "threshold" parameter, and is significantly faster than the best currently-known algorithms for standard derandomization. On the way to this result we establish a new derandomization of the switching lemma, which significantly improves on previous results when the width of the formula is small. For constant-depth circuits with parity gates, we lower a "threshold" of Goldreich and Wigderson from depth five to depth four, and construct algorithms for quantified derandomization of a remaining type of layered depth-3 circuit that they left as an open problem. We also consider the question of constructing hitting-set generators for multivariate polynomials over large fields that vanish rarely, and prove two lower bounds on the seed length of such generators. Several of our proofs rely on an interesting technique, which we call the randomized tests technique. Intuitively, a standard technique to deterministically find a "good" object is to construct a simple deterministic test that decides the set of good objects, and then "fool" that test using a pseudorandom generator. We show that a similar approach works also if the simple deterministic test is replaced with a distribution over simple tests, and demonstrate the benefits in using a distribution instead of a single test
    • …
    corecore