11 research outputs found

    Skolem Number of Cycles and Grid Graphs

    Get PDF
    A Skolem sequence can be thought of as a labelled path where two vertices with the same label are that distance apart. This concept has naturally been generalized to labellings of other graphs, but always using at most two of any integer label. Given that more than two vertices can be mutually distance d apart, we define a new generalization of a Skolem sequences on graphs that we call proper Skolem labellings. This brings rise to the question; ``what is the smallest set of consecutive positive integers we can use to proper Skolem label a graph?\u27\u27 This will be known as the Skolem number of the graph. In this paper we give the Skolem number for cycles and grid graphs, while also providing other related results along the way

    Skolem Number of Subgraphs on the Triangular Lattice

    Get PDF
    A Skolem sequence can be thought of as a labelled path where any two vertices with the same label are that distance apart. This concept has naturally been generalized to graph labelling. This brings rise to the question; “what is the smallest set of consecutive positive integers we can use to properly Skolem label a graph?” This is known as the Skolem number of the graph. In this paper we give the Skolem number for three natural vertex induced subgraphs of the triangular lattice graph

    Graceful Labeling and Skolem Graceful Labeling on the U-star Graph and It’s Application in Cryptography

    Get PDF
    Graceful Labeling on graph G=(V, E) is an injective function f from the set of the vertex V(G) to the set of numbers {0,1,2,...,|E(G)|} which induces bijective function f from the set of edges E(G) to the set of numbers {1,2,...,|E(G)|} such that for each edge uv e E(G) with u,v e V(G) in effect f(uv)=|f(u)-f(v)|. Meanwhile, the Skolem graceful labeling is a modification of the Graceful labeling. The graph has graceful labeling or Skolem graceful labeling is called graceful graph or Skolem graceful labeling graph. The graph used in this study is the U-star graph, which is denoted by U(Sn). The purpose of this research is to determine the pattern of the graceful labeling and Skolem graceful labeling on graph U(Sn) apply it to cryptography polyalphabetic cipher. The research begins by forming a graph U(Sn) and they are labeling it with graceful labeling and Skolem graceful labeling. Then, the labeling results are applied to the cryptographic polyalphabetic cipher. In this study, it is found that the U(Sn) graph is a graceful graph and a Skolem graceful graph, and the labeling pattern is obtained. Besides, the labeling results on a graph it U(Sn) can be used to form a table U(Sn) polyalphabetic cipher. The table is used as a key to encrypt messages

    Graceful labellings of new families of windmill and snake graphs

    Get PDF
    A function ƒ is a graceful labelling of a graph G = (V,E) with m edges if ƒ is an injection ƒ : V (G) → {0, 1, 2, . . . ,m} such that each edge uv ∈ E is assigned the label |ƒ(u) − ƒ(v)| ∈ {1, 2, . . . ,m}, and no two edge labels are the same. If a graph G has a graceful labelling, we say that G itself is graceful. A variant is a near graceful labelling, which is similar, except the co-domain of f is {0, 1, 2, . . . ,m + 1} and the set of edge labels are either {1, 2, . . . ,m − 1,m} or {1, 2, . . . ,m − 1,m + 1}. In this thesis, we prove any Dutch windmill with three pendant triangles is (near) graceful, which settles Rosa’s conjecture for a new family of triangular cacti. Further, we introduce graceful and near graceful labellings of several families of windmills. In particular, we use Skolem-type sequences to prove (near) graceful labellings exist for windmills with C₃ and C₄ vanes, and infinite families of 3,5-windmills and 3,6-windmills. Furthermore, we offer a new solution showing that the graph obtained from the union of t 5-cycles with one vertex in common (Ct₅ ) is graceful if and only if t ≡ 0,3 (mod 4) and near graceful when t ≡ 1, 2 (mod 4). Also, we present a new sufficiency condition to obtain a graceful labelling for every kC₄ₙ snake and use this condition to label every such snake for n = 1, 2, . . . , 6. Then, we extend this result to cyclic snakes where the cycles lengths vary. Also, we obtain new results on the (near) graceful labelling of cyclic snakes based on cycles of lengths n = 6, 10, 14, completely solving the case n = 6

    Informal Logic: A 'Canadian' Approach to Argument

    Get PDF
    The informal logic movement began as an attempt to develop – and teach – an alternative logic which can account for the real life arguing that surrounds us in our daily lives – in newspapers and the popular media, political and social commentary, advertising, and interpersonal exchange. The movement was rooted in research and discussion in Canada and especially at the University of Windsor, and has become a branch of argumentation theory which intersects with related traditions and approaches (notably formal logic, rhetoric and dialectics in the form of pragma-dialectics). In this volume, some of the best known contributors to the movement discuss their views and the reasoning and argument which is informal logic’s subject matter. Many themes and issues are explored in a way that will fuel the continued evolution of the field. Federico Puppo adds an insightful essay which considers the origins and development of informal logic and whether informal logicians are properly described as a “school” of thought. In considering that proposition, Puppo introduces readers to a diverse range of essays, some of them previously published, others written specifically for this volume

    Rotulações graciosas e rotulações semifortes em grafos

    Get PDF
    Orientador: Christiane Neme CamposTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Três problemas de rotulação em grafos são investigados nesta tese: a Conjetura das Árvores Graciosas, a Conjetura 1,2,3 e a Conjetura 1,2. Uma rotulação graciosa de um grafo simples G=(V(G),E(G)) é uma função injetora f de V(G) em {0,...,|E(G)|} tal que {|f(u)-f(v)|: uv em E(G)} = {1,...,|E(G)|}. A Conjetura das Árvores Graciosas, proposta por Rosa e Kotzig em 1967, afirma que toda árvore possui uma rotulação graciosa. Um problema relacionado à Conjetura das Árvores Graciosas consiste em determinar se, para todo vértice v de uma árvore T, existe uma rotulação graciosa de T que atribui o rótulo 0 a v. Árvores com tal propriedade são denominadas 0-rotativas. Nesta tese, apresentamos famílias infinitas de caterpillars 0-rotativos. Nossos resultados reforçam a conjetura de que todo caterpillar com diâmetro pelo menos cinco é 0-rotativo. Também investigamos uma rotulação graciosa mais restrita, chamada rotulação-alpha. Uma rotulação graciosa f de G é uma rotulação-alpha se existir um inteiro k, 0 <= k <= |E(G)|, tal que, para toda aresta uv em E(G), f(u) <= k < f(v) ou f(v) <= k < f(u). Nesta tese, apresentamos duas famílias de lobsters com grau máximo três que possuem rotulações-alpha. Nossos resultados contribuem para uma caracterização de todos os lobsters com grau máximo três que possuem rotulações-alpha. Na segunda parte desta tese, investigamos generalizações da Conjetura 1,2,3 e da Conjetura 1,2. Dado um grafo simples G = (V(G),E(G)) e um subconjunto L dos números reais, dizemos que uma função f de E(G) em L é uma L-rotulação de arestas de G e dizemos que uma função f da união de V(G) com E(G) em L é uma L-rotulação total de G. Para todo vértice v de G, a cor de v, C(v), é definida como a soma dos rótulos das arestas incidentes em v, se f for uma L-rotulação de arestas de G. Se f for uma L-rotulação total, C(v) é a soma dos rótulos das arestas incidentes no vértice v mais o valor f(v). O par (f,C) é uma L-rotulação de arestas semiforte (L-rotulação total semiforte) se f for uma rotulação de arestas (rotulação total) e C(u) for diferente de C(v) para quaisquer dois vértices adjacentes u,v de G. A Conjetura 1,2,3, proposta por Karónski et al. em 2004, afirma que todo grafo simples e conexo com pelo menos três vértices possui uma {1,2,3}-rotulação de arestas semiforte. A Conjetura 1,2, proposta por Przybylo e Wozniak em 2010, afirma que todo grafo simples possui uma {1,2}-rotulação total semiforte. Sejam a,b,c três reais distintos. Nesta tese, nós investigamos {a,b,c}-rotulações de arestas semifortes e {a,b}-rotulações totais semifortes para cinco famílias de grafos: as potências de caminho, as potências de ciclo, os grafos split, os grafos cobipartidos regulares e os grafos multipartidos completos. Provamos que essas famílias possuem tais rotulações para alguns valores reais a,b,c. Como corolário de nossos resultados, obtemos que a Conjetura 1,2,3 e a Conjetura 1,2 são verdadeiras para essas famílias. Além disso, também mostramos que nossos resultados em rotulações de arestas semifortes implicam resultados similares para outro problema de rotulação de arestas relacionadoAbstract: This thesis addresses three labelling problems on graphs: the Graceful Tree Conjecture, the 1,2,3-Conjecture, and the 1,2-Conjecture. A graceful labelling of a simple graph G=(V(G),E(G)) is an injective function f from V(G) to {0,...,|E(G)|} such that {|f(u)-f(v)| : uv in E(G)} = {1,...,|E(G)|}. The Graceful Tree Conjecture, posed by Rosa and Kotzig in 1967, states that every tree has a graceful labelling. A problem connected with the Graceful Tree Conjecture consists of determining whether, for every vertex v of a tree T, there exists a graceful labelling of T that assigns label 0 to v. Trees with such a property are called 0-rotatable. In this thesis, we present infinite families of 0-rotatable caterpillars. Our results reinforce a conjecture that states that every caterpillar with diameter at least five is 0-rotatable. We also investigate a stronger type of graceful labelling, called alpha-labelling. A graceful labelling f of G is an alpha-labelling if there exists an integer k with 0<= k <= |E(G)| such that, for each edge uv in E(G), either f(u) <= k < f(v) or f(v) <= k < f(u). In this thesis, we prove that the following families of lobsters have alpha-labellings: lobsters with maximum degree three, without Y-legs and with at most one forbidden ending; and lobsters T with a perfect matching M such that the contracted tree T/M has a balanced bipartition. These results point towards a characterization of all lobsters with maximum degree three that have alpha-labellings. In the second part of the thesis, we focus on generalizations of the 1,2,3-Conjecture and the 1,2-Conjecture. Given a simple graph G=(V(G),E(G)) and a subset L of real numbers, we call a function f from E(G) to L an L-edge-labelling of G, and we call a function f from V(G) union E(G) to L an L-total-labelling of G. For each vertex v of G, the colour of v, C(v), is defined as the sum of the labels of its incident edges, if f is an L-edge-labelling. If f is an L-total-labelling, C(v) is the sum of the labels of the edges incident with vertex v plus the label f(v). The pair (f,C) is a neighbour-distinguishing L-edge-labelling (neighbour-distinguishing L-total-labelling) if f is an edge-labelling (total-labelling) and C(u) is different from C(v), for every edge uv in E(G). The 1,2,3-Conjecture, posed by Kar\'onski et al. in 2004, states that every connected simple graph with at least three vertices has a neighbour-distinguishing {1,2,3}-edge-labelling. The 1,2-Conjecture, posed by Przybylo and Wozniak in 2010, states that every simple graph has a neighbour-distinguishing {1,2}-total-labelling. Let a,b,c be distinct real numbers. In this thesis, we investigate neighbour-distinguishing {a,b,c}-edge-labellings and neighbour-distinguishing {a,b}-total labellings for five families of graphs: powers of paths, powers of cycles, split graphs, regular cobipartite graphs and complete multipartite graphs. We prove that these families have such labellings for some real values a, b, and c. As a corollary of our results, we obtain that the 1,2,3-Conjecture and the 1,2-Conjecture are true for these families. Furthermore, we also show that our results on neighbour-distinguishing edge-labellings imply similar results on a closely related problem called detectable edge-labelling of graphsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/16861-8FAPESPCAPE

    Starter sequences: generalizations and applications

    Get PDF
    In this thesis we introduce new types of starter sequences, pseudo-starter sequences, starter-labellings, and generalized (extended) starter sequences. We apply these new sequences to graph labeling. All the necessary conditions for the existence of starter, pseudo-starter, extended, m-fold, excess, and generalized (extended) starter sequences are determined, and some of these conditions are shown to be sufficient. The relationship between starter sequences and graph labellings is introduced. Moreover, the starter-labeling and the minimum hooked starter-labeling of paths, cycles, and k- windmills are investigated. We show that all paths, cycles, and k-windmills can be starter-labelled or minimum starter-labelled
    corecore