2,972 research outputs found

    Modeling Solder Ball Array Interconnects for Power Module Optimization

    Get PDF
    PowerSynth is a software platform that can co-optimize power modules utilizing a 2D topology and wire bond interconnects. The novel 3D architectures being proposed at the University of Arkansas utilize solder ball interconnects instead of wire bonds. Therefore, they currently cannot be optimized using PowerSynth. This paper examines methods to accurately model the parasitic inductance of solder balls and ball grid arrays so they may be implemented into software for optimization. Proposed mathematical models are validated against ANSYS Electromagnetics Suite simulations. A comparison of the simulated data shows that mathematical models are well suited for implementation into optimization software platforms. Experimental measurements proved to be inconclusive and necessitate future work

    Entire domain basis function expansion of the differential surface admittance for efficient broadband characterization of lossy interconnects

    Get PDF
    This article presents a full-wave method to characterize lossy conductors in an interconnect setting. To this end, a novel and accurate differential surface admittance operator for cuboids based on entire domain basis functions is formulated. By combining this new operator with the augmented electric field integral equation, a comprehensive broadband characterization is obtained. Compared with the state of the art in differential surface admittance operator modeling, we prove the accuracy and improved speed of the novel formulation. Additional examples support these conclusions by comparing the results with commerical software tools and with measurements

    An effective modeling framework for the analysis of interconnects subject to line-edge roughness

    Get PDF
    This letter proposes a complete and efficient simulation framework to assess the effects of line-edge roughness appearing in on-chip lines. The modeling approach consists of three steps. First, a stochastic macromodel is created for the per-unit-length RLGC parameters of the line. Secondly, random conductor edge profiles are generated using randomized splines. These are combined with the stochastic macromodel to readily provide place-dependent RLGC parameters. Finally, the resulting nonuniform transmission line is analyzed by means of a fast and accurate perturbation technique. To validate the proposed approach, a statistical analysis of the response of a coupled inverted embedded microstrip line is carried out for different roughness parameters

    On signalling over through-silicon via (TSV) interconnects in 3-D integrated circuits.

    Get PDF
    This paper discusses signal integrity (SI) issues and signalling techniques for Through Silicon Via (TSV) interconnects in 3-D Integrated Circuits (ICs). Field-solver extracted parasitics of TSVs have been employed in Spice simulations to investigate the effect of each parasitic component on performance metrics such as delay and crosstalk and identify a reduced-order electrical model that captures all relevant effects. We show that in dense TSV structures voltage-mode (VM) signalling does not lend itself to achieving high data-rates, and that current-mode (CM) signalling is more effective for high throughput signalling as well as jitter reduction. Data rates, energy consumption and coupled noise for the different signalling modes are extracted
    corecore