275 research outputs found

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Interactions between soccer teams reveal both design and emergence: cooperation, competition and Zipf-Mandelbrot regularity

    Get PDF
    Considering soccer matches as complex systems facilitates the identification of properties that emerge from the interactions between players. Such properties include the regularities and statistical patterns that characterize couplings and sets between players established during matches. Empirical studies on the statistical distributions of number of items (e.g., words in texts) have shown that these distribu- tions follow scaling properties according to empirical laws known as Zipf-Mandelbrot. Here we investigate whether the (re)occurrence of pitch location of sets of players in a soccer match also obeys these empiri- cal laws. Data collected from 10 soccer matches shows that, for most sets of players, this seems to be the case. Exceptions were found in particular types of sets, such as goalkeeper and goal, and left defender and right attacker from opposite teams. Rather than challenging the hypothesis that a Zipf-Mandelbrot law defines this system, these exceptions may be explained by the players configuration design, which is a trait of human interaction within complex systems. This design expresses match strategy, before the team enters in such dynamical processes (the game).info:eu-repo/semantics/acceptedVersio
    • 

    corecore