58,544 research outputs found

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    Communicating answer set programs

    Get PDF
    Answer set programming i s a form of declarative programming that has proven very successful in succinctly formulating and solving complex problems. Although mechanisms for representing and reasoning with the combined answer set programs of multiple agents have already been proposed, the actual gain in expressivity when adding communication has not been thoroughly studied. We show that allowing simple programs to talk to each other results in the same expressivity as adding negation-as-failure. Furthermore, we show that the ability to focus on one program in a network of simple programs results in the same expressivity as adding disjunction in the head of the rules

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂŒbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂ©, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    On tractability and congruence distributivity

    Get PDF
    Constraint languages that arise from finite algebras have recently been the object of study, especially in connection with the Dichotomy Conjecture of Feder and Vardi. An important class of algebras are those that generate congruence distributive varieties and included among this class are lattices, and more generally, those algebras that have near-unanimity term operations. An algebra will generate a congruence distributive variety if and only if it has a sequence of ternary term operations, called Jonsson terms, that satisfy certain equations. We prove that constraint languages consisting of relations that are invariant under a short sequence of Jonsson terms are tractable by showing that such languages have bounded relational width

    Hardness of submodular cost allocation : lattice matching and a simplex coloring conjecture

    Get PDF
    We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f1, ... , fk: 2V -> R+ and the goal is to partition V into k sets A1, ..., Ak so as to minimize the total cost sumi = 1,k fi(Ai). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function fi satisfies fi = gi + h, where each gi is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3

    Universal First-Order Logic is Superfluous for NL, P, NP and coNP

    Full text link
    In this work we continue the syntactic study of completeness that began with the works of Immerman and Medina. In particular, we take a conjecture raised by Medina in his dissertation that says if a conjunction of a second-order and a first-order sentences defines an NP-complete problems via fops, then it must be the case that the second-order conjoint alone also defines a NP-complete problem. Although this claim looks very plausible and intuitive, currently we cannot provide a definite answer for it. However, we can solve in the affirmative a weaker claim that says that all ``consistent'' universal first-order sentences can be safely eliminated without the fear of losing completeness. Our methods are quite general and can be applied to complexity classes other than NP (in this paper: to NLSPACE, PTIME, and coNP), provided the class has a complete problem satisfying a certain combinatorial property

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k≄2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer ℓ≄1\ell \ge 1 the problem of finding a minimum weight maximal distance-2ℓ2\ell matching and the problem of finding a minimum weight (2ℓ−1)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of ÎŽln⁥∣V(G)∣\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where ÎŽ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time
    • 

    corecore