15,706 research outputs found

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro

    Kalman meets Shannon

    Full text link
    We consider the problem of communicating the state of a dynamical system via a Shannon Gaussian channel. The receiver, which acts as both a decoder and estimator, observes the noisy measurement of the channel output and makes an optimal estimate of the state of the dynamical system in the minimum mean square sense. The transmitter observes a possibly noisy measurement of the state of the dynamical system. These measurements are then used to encode the message to be transmitted over a noisy Gaussian channel, where a per sample power constraint is imposed on the transmitted message. Thus, we get a mixed problem of Shannon's source-channel coding problem and a sort of Kalman filtering problem. We first consider the problem of communication with full state measurements at the transmitter and show that optimal linear encoders don't need to have memory and the optimal linear decoders have an order of at most that of the state dimension. We also give explicitly the structure of the optimal linear filters. For the case where the transmitter has access to noisy measurements of the state, we derive a separation principle for the optimal communication scheme, where the transmitter needs a filter with an order of at most the dimension of the state of the dynamical system. The results are derived for first order linear dynamical systems, but may be extended to MIMO systems with arbitrary order

    Mutual Information and Minimum Mean-square Error in Gaussian Channels

    Full text link
    This paper deals with arbitrarily distributed finite-power input signals observed through an additive Gaussian noise channel. It shows a new formula that connects the input-output mutual information and the minimum mean-square error (MMSE) achievable by optimal estimation of the input given the output. That is, the derivative of the mutual information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE, regardless of the input statistics. This relationship holds for both scalar and vector signals, as well as for discrete-time and continuous-time noncausal MMSE estimation. This fundamental information-theoretic result has an unexpected consequence in continuous-time nonlinear estimation: For any input signal with finite power, the causal filtering MMSE achieved at SNR is equal to the average value of the noncausal smoothing MMSE achieved with a channel whose signal-to-noise ratio is chosen uniformly distributed between 0 and SNR
    • …
    corecore