1,024 research outputs found

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Applications of laser-spot thermography to thermal diffusivity and crack measurements on static and moving samples

    Get PDF
    176 p.Esta tesis tiene como objetivo explorar la termografía infrarroja con excitación óptica focalizada para estudiar la difusividad térmica en el plano y para la caracterización de grietas. Por un lado, se investiga la difusividad de todo tipo de materiales, midiendo muestras estáticas y también muestras en movimiento a velocidad constante. Se usa tanto iluminación continua como modulada, y los materiales investigados cubren un amplio rango de valores de conductividad, transparencia y grosor, incluyendo también el estudio de materiales anisótropos. Por otra parte, se utiliza iluminación modulada para caracterizar grietas calibradas con penetración infinita, con el objetivo de determinar su anchura y ángulo de inclinación, así como también para cuantificar la anchura y penetración de grietas finitas presentes en muestras reales

    Comparative analysis of full-field OCT and optical transmission tomography

    Full text link
    This work compares two tomographic imaging technologies, time-domain full-field optical coherence tomography (FFOCT) working in reflection and optical transmission tomography (OTT), using a new optical setup that combines both. We show that, due to forward-scattering properties, the axial sectioning and contrast in OTT can be optimized by tuning illumination. The influence of sample scattering and thickness are discussed. We illustrate the comparison of the two methods in static (morphology) and dynamic (metabolic contrast) regimes using cell cultures, tissues and entire organisms emphasizing the advantages of both approaches

    Algorithm Theoretical Basis Document for “High Resolution Winds” (HRW - PGE09 v4.0)

    Get PDF
    SAF/NWC/CDOP2/INM/SCI/ATBD/09, Issue 4, Rev.0This document is the Algorithm Theoretical Basis Document for the HRW product: the component of the SAFNWC/MSG software package for the calculation of High Resolution Winds (HRW), using up to seven MSG/SEVIRI channels: HRVIS (High Resolution Visible), VIS06 and VIS08 (Visible 0.6 mm and 0.8 mm), WV062 and WV073 (Water vapour 6.2 mm and 7.3 mm), IR108 and IR120 (Infrared 10.8 mm and 12.0 mm). It describes the HRW product objectives, the scientific algorithm, the needed input data and the resulting output. It also provides basic information on the algorithm implementation

    Algorithm Theoretical Basis Document for the Wind product processors of the NWC/GEO

    Get PDF
    NWC/CDOP2/GEO/AEMET/SCI/ATBD/Wind, Issue 1, Rev.1. Applicable to GEO-HRW v5.0 (NWC-037

    Design and Analysis of Reversible Data Hiding Using Hybrid Cryptographic and Steganographic approaches for Multiple Images

    Get PDF
    Data concealing is the process of including some helpful information on images. The majority of sensitive applications, such sending authentication data, benefit from data hiding. Reversible data hiding (RDH), also known as invertible or lossless data hiding in the field of signal processing, has been the subject of a lot of study. A piece of data that may be recovered from an image to disclose the original image is inserted into the image during the RDH process to generate a watermarked image. Lossless data hiding is being investigated as a strong and popular way to protect copyright in many sensitive applications, such as law enforcement, medical diagnostics, and remote sensing. Visible and invisible watermarking are the two types of watermarking algorithms. The watermark must be bold and clearly apparent in order to be visible. To be utilized for invisible watermarking, the watermark must be robust and visibly transparent. Reversible data hiding (RDH) creates a marked signal by encoding a piece of data into the host signal. Once the embedded data has been recovered, the original signal may be accurately retrieved. For photos shot in poor illumination, visual quality is more important than a high PSNR number. The DH method increases the contrast of the host picture while maintaining a high PSNR value. Histogram equalization may also be done concurrently by repeating the embedding process in order to relocate the top two bins in the input image's histogram for data embedding. It's critical to assess the images after data concealment to see how much the contrast has increased. Common picture quality assessments include peak signal to noise ratio (PSNR), relative structural similarity (RSS), relative mean brightness error (RMBE), relative entropy error (REE), relative contrast error (RCE), and global contrast factor (GCF). The main objective of this paper is to investigate the various quantitative metrics for evaluating contrast enhancement. The results show that the visual quality may be preserved by including a sufficient number of message bits in the input photographs

    Interaction-free measurements with electrons and optical field enhancement at nanotips

    Get PDF
    Sogenannte wechselwirkungsfreie Messungen sind ein aus der Quantenmechanik bekanntes Interferenzphänomen, mit dessen Hilfe die Anwesenheit eines Objekts detektiert werden kann, ohne das Objekt in irgendeiner Weise zu stören. Der erste Teil dieser Arbeit befasst sich mit wechselwirkungsfreien Messungen mit Elektronen. Integriert in ein Mikroskop könnte diese Technik es ermöglichen, die bei Elektronenmikropskopie auftretenden Strahlenschäden erheblich zu reduzieren. Es werden verschiedene Ansätze zur Realisierung von wechselwirkungsfreien Messungen mit Elektronen und die dabei auftretenden Schwierigkeiten besprochen. Hauptthema hierbei ist der benötigte Elektronen-Strahlteiler. Wir stellen einen möglichen Ansatz vor, der auf der Kontrolle und dem Einschluss eines Elektronenstrahls durch Mikrowellenfelder beruht. Mit diesem Strahlteiler ist es gelungen, einen langsamen Elektronenstrahl mit kinetischer Energie von ungefähr 1 eV in zwei Strahlen zu spalten. Wir diskutieren in einem vereinfachten quantenmechanischen Modell, welche Eigenschaften ein solcher Strahlteiler aufweisen muss, um Elektronenwellen ohne Störung zu teilen und wechselwirkungsfreie Messungen zu ermöglichen. Außerdem beschäftigen wir uns mit der Anwendung von interaktionsfreien Messungen in der Bildgebung, insbesondere mit der Frage, inwiefern sie die Messung und Unterscheidung von Graustufen erlauben. Es stellt sich heraus, dass die Messung von Graustufen im typischen Interferenzaufbau einer wechselwirkungsfreien Messung zwar möglich ist, aber der dabei entstehende Schaden am Messobjekt nur in speziellen Fällen geringer ist als in einer herkömmlichen Transmissionsmessung. Wir untersuchen auch den Einfluss von Phasenverschiebungen. Bei Messobjekten, die Graustufen aufweisen und Phasenverschiebungen verursachen, können wechselwirkungsfreie Messungen für Objekte mit hoher Transparenz weniger Schaden verursachen als konventionelle Transmissionsmessungen und Messungen mit einem Mach-Zehnder-Interferometer. Ein weiteres Thema dieser Arbeit ist die optische Feldverstärkung an Nanospitzen. Wir untersuchen in numerischen Simulationen über einen großen Parameterbereich, wie die Höhe der Feldverstärkung von der Geometrie und dem Material der Spitze abhängt. Dabei stellen wir fest, dass neben dem Krümmungsradius der Spitze auch der Öffnungswinkel einen überraschend großen Einfluss auf die Feldverstärkung hat, welchen wir durch ein vereinfachtes Modell qualitativ erklären können. Anwendung findet die optische Feldverstärkung in der Photoemission von Elektronen aus scharfen Metallspitzen. Hierzu zeigen wir Experimente in verschiedenen Regimes der Photoemission: einerseits Multiphotonenemission mit einem Erbium-Faserlaser und andererseits Photoemission im Starkfeldregime mit einem Titan-Saphir-Oszillator. Letztere Messungen erlauben es, mit Hilfe einer neuen, auf Elektronen-Rückstreuung beruhenden Methode die optische Feldverstärkung in unmittelbarer Nähe der Spitzenoberfläche zu ermitteln. Die so erhaltenen Ergebnisse stimmen gut mit den Simulationen überein.Using an interference phenomenon well known from quantum mechanics and often called an "interaction-free measurement", it is possible to detect an object's presence without disturbing the object in any way. The first part of this thesis is about realizing an interaction-free measurement with electrons. If this technique can be integrated into an electron microscope, it could enable a significant reduction of radiation damage during imaging. We discuss different approaches towards the realization of an interaction-free measurement with electrons and the challenges that arise there. One necessary component and the main topic of our discussion is an electron beam splitter. We present a possible approach to realize such a beam splitter based on the control and guiding of an electron beam with microwave fields. Using this beam splitter, we were able to split a slow electron beam with a kinetic energy of approximately 1 eV into two beams. In a simplified quantum-mechanical model, we discuss what properties such a beam splitter must have in order to split electron waves without disturbing them and to allow interaction-free measurements. Additionally, we discuss the application of interaction-free measurements to imaging, in particular the question of measuring and distinguishing gray values. It turns out that the measurement of gray values in the typical interference setup of an interaction-free measurement is possible, but it is only in special cases that the resulting damage to the sample is smaller than in a regular transmission measurement. We also investigate the effect of phase shifts. For samples with both phase shifts and gray levels, interaction-free measurements cause less damage than conventional transmission measurements and Mach-Zehnder interferometers if the samples are highly transparent. Another topic of this thesis is optical field enhancement at nanotips. In numerical simulations over a large range of parameters, we investigate how the strength of the field enhancement depends on the geometry and the material of the nanotip. Our results show that, next to the radius of curvature, the tip's opening angle also has a surprisingly strong effect on the enhancement, which we can explain qualitatively in a simplified model. An application of optical field enhancement is the photoemission of electrons from sharp metal tips. We show experiments for two different types of photoemission: on the one hand, multiphoton photoemission with an erbium fiber laser, and on the other hand, strong-field photoemission with a titanium-sapphire oscillator. Using a new method based on electron rescattering, the latter measurements make it possible to determine the strength of the enhanced near-field in close vicinity to the surface of the tip. The results are in good agreement with our simulations

    Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    Get PDF
    PublishedJournal ArticleThe static and dynamic magnetic properties of magnetic nanowire arrays with high packing density (>0.4) and wire diameter much greater than the exchange length have been studied by static and time-resolved magneto-optical Kerr effect measurements and micromagnetic simulations. The nanowires were formed by electrodeposition within a nanoporous template such that their symmetry axes lay normal to the plane of the substrate. A quantitative and systematic investigation has been made of the static and dynamic properties of the array, which lie between the limiting cases of a single wire and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire. The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment and simulation. The resonant frequencies are initially found to decrease as the applied field is increased from remanence. This is the result of a change of mode profile within the plane of the array from nonuniform to uniform as the ground state evolves with increasing applied field. Quantitative differences between experimental and simulated spectra are observed when the field is applied perpendicular to the nanowire axes. The dependence of the magnetic excitation spectra upon the array packing density is explored, and dispersion curves for spin waves propagating within the array parallel to the nanowire axis are presented. Finally, a tunneling of end modes through the middle region of the nanowires was observed. The tunneling is more efficient for wires forming densely packed arrays, as a result of the extended penetration of the dynamic demagnetizing fields into the middle of the wires and due to the lowering of the tunneling barrier by the static demagnetizing field of the array. © 2013 American Physical Society.The authors gratefully acknowledge the assistance of V.-A. Antohe and S. Tuilard with sample fabrication and M. Dvornik, M. Franchin, and H. Fangohr with micromagnetic simulations. The financial support from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreements No. 212257 MASTER (fabrication and experiment) and No. 233552 DYNAMAG (simulations) is gratefully acknowledged. We also gratefully acknowledge financial support from a UKIERI-DST standard research award (Grants No. SA 07-021 and No. DST/INT/UKIERI/SA/P- 2/2008) for travel between S. N. B. N. C. B. S., India, and the University of Exeter, United Kingdom. Finally, V.V.K. gratefully acknowledges funding received from the U.K. Engineering and Physical Sciences Research Council Project No. EP/E055087/1

    Advanced electro-optical imaging techniques

    Get PDF
    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes
    corecore