7,158 research outputs found

    Modelling the Self-Assembly of Virus Capsids

    Full text link
    We use computer simulations to study a model, first proposed by Wales [1], for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe more complex assembly dynamics than that seen for the original T = 1 model.Comment: 16 pages, 11 figure

    Supramolecular structure in the membrane of Staphylococcus aureus

    Get PDF
    The fundamental processes of life are organized and based on common basic principles. Molecular organizers, often interacting with the membrane, capitalize on cellular polarity to precisely orientate essential processes. The study of organisms lacking apparent polarity or known cellular organizers (e.g., the bacterium Staphylococcus aureus) may enable the elucidation of the primal organizational drive in biology. How does a cell choose from infinite locations in its membrane? We have discovered a structure in the S. aureus membrane that organizes processes indispensable for life and can arise spontaneously from the geometric constraints of protein complexes on membranes. Building on this finding, the most basic cellular positioning system to optimize biological processes, known molecular coordinators could introduce further levels of complexity. All life demands the temporal and spatial control of essential biological functions. In bacteria, the recent discovery of coordinating elements provides a framework to begin to explain cell growth and division. Here we present the discovery of a supramolecular structure in the membrane of the coccal bacterium Staphylococcus aureus, which leads to the formation of a large-scale pattern across the entire cell body; this has been unveiled by studying the distribution of essential proteins involved in lipid metabolism (PlsY and CdsA). The organization is found to require MreD, which determines morphology in rod-shaped cells. The distribution of protein complexes can be explained as a spontaneous pattern formation arising from the competition between the energy cost of bending that they impose on the membrane, their entropy of mixing, and the geometric constraints in the system. Our results provide evidence for the existence of a self-organized and nonpercolating molecular scaffold involving MreD as an organizer for optimal cell function and growth based on the intrinsic self-assembling properties of biological molecules

    DNA Computing by Self-Assembly

    Get PDF
    Information and algorithms appear to be central to biological organization and processes, from the storage and reproduction of genetic information to the control of developmental processes to the sophisticated computations performed by the nervous system. Much as human technology uses electronic microprocessors to control electromechanical devices, biological organisms use biochemical circuits to control molecular and chemical events. The engineering and programming of biochemical circuits, in vivo and in vitro, would transform industries that use chemical and nanostructured materials. Although the construction of biochemical circuits has been explored theoretically since the birth of molecular biology, our practical experience with the capabilities and possible programming of biochemical algorithms is still very young

    Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery

    Get PDF
    Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines. Their molecular framework and modular design allow the installation of saccharidic antennae to promote specific carbohydrate–protein interactions, thus potentially endowing them with selective targeting abilities. Yet, the presence of these additional functionalities onto the polycationic cluster may hamper paCD self-assembly and nucleic acid condensation. In this report we describe the influence of paCD mannosylation extent on paCD-pDNA nanocomplex stability as well as the consequences of varying glycotope density on mannose-specific lectin recognition and gene delivery capabilities. The work aims at exploring the potential of this approach to optimize both properties in order to modulate cell transfection selectivity.Ministerio de Economía y Competitividad SAF2013-44021-RJunta de Andalucía FQM-146

    Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.

    Get PDF
    Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, specifically in drug delivery and tissue regeneration. However, the intrinsic antibacterial capabilities of these assemblies have been largely overlooked. The recent identification of common characteristics shared by antibacterial and self-assembling peptides provides a paradigm shift towards development of antibacterial agents. Here we present the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers. The diphenylalanine nano-assemblies completely inhibit bacterial growth, trigger upregulation of stress-response regulons, induce substantial disruption to bacterial morphology, and cause membrane permeation and depolarization. We demonstrate the specificity of these membrane interactions and the development of antibacterial materials by integration of the peptide assemblies into tissue scaffolds. This study provides important insights into the significance of the interplay between self-assembly and antimicrobial activity and establishes innovative design principles toward the development of antimicrobial agents and materials

    Amphiphilic peptide-tagged N-cadherin forms radial glial-like fibers that enhance neuronal migration in injured brain and promote sensorimotor recovery

    Get PDF
    The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self- assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy

    Biomimetic and Biophysical Approach to Profile Metastatic Cancer Cell Migration

    Get PDF
    Honors Research ScholarshipCancer metastasis is a complex process by which cells in a primary tumor acquire an aggressive phenotype, and travel to distant, secondary sites in the body. One aspect of cancer metastasis is cell migration toward the vascular system, called invasion. Multiple modalities of single cell invasion exist, including amoeboid migration and mesenchymal migration. Amoeboid migration is less well understood, and in particular, the forces involved in amoeboid migration have yet to be fully elucidated at a subcellular scale. Cellular traction force microscopy, or CTFM, is one method used to probe migration forces. However, this approach is largely limited to two dimensions, and is limited by the size of the pillars on the substrate. To address these limitations, we developed a system using microfluidics and DNA origami capable of real-time force measurement of cell migration on a subcellular scale with a 10 pN resolution. Microfluidic devices were made using soft lithography and replica molding in our laboratory. DNA origami were made using protocols developed by Michael Hudoba and Dr. Carlos Castro in the Nanoengineering and Biodesign Laboratory. The devices were imaged using TIRF microscopy to study dwell times of the sensors in the open and closed states, and the devices were analyzed with an AFM to determine that they are best suited for measuring shear forces. Further, the presence of streptavidin protein was found to have a significant effect on DOFS binding with a p-value less than 0.05. DOFS concentrations around 1 nM were found to provide the most coverage while minimizing structure aggregation. Thus, our microfluidic devices are able to be functionalized with DNA origami force sensors with a high degree of attachment. This platform is thus capable of measuring cell migration and adhesion forces, and future work should harness this system to create 3D maps of cell migration to gain insight into invasion.Institute for Materials ResearchSecond-Year Transformational Experience Program (STEP)A one-year embargo was granted for this item.Academic Major: Biomedical Engineerin
    • …
    corecore