36 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Spatially Selective Artificial-Noise Aided Transmit Optimization for MISO Multi-Eves Secrecy Rate Maximization

    Full text link
    Consider an MISO channel overheard by multiple eavesdroppers. Our goal is to design an artificial noise (AN)-aided transmit strategy, such that the achievable secrecy rate is maximized subject to the sum power constraint. AN-aided secure transmission has recently been found to be a promising approach for blocking eavesdropping attempts. In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized. In particular, for design convenience, it is common to prefix the AN covariance as a specific kind of spatially isotropic covariance. This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern. Hence, the proposed design has potential in jamming the eavesdroppers more effectively, based upon the channel state information (CSI). We derive an optimization approach to the SRM problem through both analysis and convex conic optimization machinery. We show that the SRM problem can be recast as a single-variable optimization problem, and that resultant problem can be efficiently handled by solving a sequence of semidefinite programs. Our framework deals with a general setup of multiple multi-antenna eavesdroppers, and can cater for additional constraints arising from specific application scenarios, such as interference temperature constraints in interference networks. We also generalize the framework to an imperfect CSI case where a worst-case robust SRM formulation is considered. A suboptimal but safe solution to the outage-constrained robust SRM design is also investigated. Simulation results show that the proposed AN-aided SRM design yields significant secrecy rate gains over an optimal no-AN design and the isotropic AN design, especially when there are more eavesdroppers.Comment: To appear in IEEE Trans. Signal Process., 201

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    Transmit optimization techniques for physical layer security

    Get PDF
    PhD ThesisOver the last several decades, reliable communication has received considerable attention in the area of dynamic network con gurations and distributed processing techniques. Traditional secure communications mainly considered transmission cryptography, which has been developed in the network layer. However, the nature of wireless transmission introduces various challenges of key distribution and management in establishing secure communication links. Physical layer security has been recently recognized as a promising new design paradigm to provide security in wireless networks in addition to existing conventional cryptographic methods, where the physical layer dynamics of fading channels are exploited to establish secure wireless links. On the other hand, with the ever-increasing demand of wireless access users, multi-antenna transmission has been considered as one of e ective approaches to improve the capacity of wireless networks. Multi-antenna transmission applied in physical layer security has extracted more and more attentions by exploiting additional degrees of freedom and diversity gains. In this thesis, di erent multi-antenna transmit optimization techniques are developed for physical layer secure transmission. The secrecy rate optimization problems (i.e., power minimization and secrecy rate maximization) are formulated to guarantee the optimal power allocation. First, transmit optimization for multiple-input single-output (MISO) secrecy channels are developed to design secure transmit beamformer that minimize the transmit power to achieve a target secrecy rate. Besides, the associated robust scheme with the secrecy rate outage probability constraint are presented with statistical channel uncertainty, where the outage probability constraint requires that the achieved secrecy rate exceeds certain thresholds with a speci c probability. Second, multiantenna cooperative jammer (CJ) is presented to provide jamming services that introduces extra interference to assist a multiple-input multipleoutput (MIMO) secure transmission. Transmit optimization for this CJaided MIMO secrecy channel is designed to achieve an optimal power allocation. Moreover, secure transmission is achieved when the CJ introduces charges for its jamming service based on the amount of the interference caused to the eavesdropper, where the Stackelberg game is proposed to handle, and the Stackelberg equilibrium is analytically derived. Finally, transmit optimization for MISO secure simultaneous wireless information and power transfer (SWIPT) is investigated, where secure transmit beamformer is designed with/without the help of arti - cial noise (AN) to maximize the achieved secrecy rate such that satisfy the transmit power budget and the energy harvesting (EH) constraint. The performance of all proposed schemes are validated by MATLAB simulation results
    corecore