36 research outputs found

    On Secrecy Performance of MISO SWIPT Systems With TAS and Imperfect CSI

    Get PDF
    In this paper, a multiple-input single-output (MISO) simultaneous wireless information and power transfer (SWIPT) system, including one base station (BS) equipped with multiple antennas, one desired single-antenna information receiver (IR), and N (N > 1) single-antenna energy-harvesting receivers (ERs) is considered. Assuming that the information signal to the desired IR may be eavesdropped by ERs if ERs are malicious, we investigate the secrecy performance of the target MISO SWIPT system when imperfect channel state information (CSI) is available and adopted for transmit antenna selection at the BS. Considering that each eavesdropping link experiences independent but not necessarily identically distributed Rayleigh fading, the closed-form expressions for the exact and the asymptotic secrecy outage probability, and the average secrecy capacity are derived and verified by simulations. Furthermore, the optimal power splitting factor is derived for each ER to realize the tradeoff between the energy harvesting and the information eavesdropping. Our results reveal the impact of the imperfect CSI on the secrecy performance of MISO SWIPT systems in the presence of multiple wiretap channels

    On secure system performance over SISO, MISO and MIMO-NOMA wireless networks equipped a multiple antenna based on TAS protocol

    Get PDF
    This study examined how to improve system performance by equipping multiple antennae at a base station (BS) and all terminal users/mobile devices instead of a single antenna as in previous studies. Experimental investigations based on three NOMA down-link models involved (1) a single-input-single-output (SISO) scenario in which a single antenna was equipped at a BS and for all users, (2) a multi-input-single-output (MISO) scenario in which multiple transmitter antennae were equipped at a BS and a single receiver antenna for all users and (3) a multi-input-multi-output (MIMO) scenario in which multiple transmitter antennae were equipped at a BS and multiple receiver antenna for all users. This study investigated and compared the outage probability (OP) and system throughput assuming all users were over Rayleigh fading channels. The individual scenarios also each had an eavesdropper. Secure system performance of the individual scenarios was therefore also investigated. In order to detect data from superimposed signals, successive interference cancellation (SIC) was deployed for users, taking into account perfect, imperfect and fully imperfect SICs. The results of analysis of users in these three scenarios were obtained in an approximate closed form by using the Gaussian-Chebyshev quadrature method. However, the clearly and accurately presented results obtained using Monte Carlo simulations prove and verify that the MIMO-NOMA scenario equipped with multiple antennae significantly improved system performance.Web of Science20201art. no. 1

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Optimization of secure wireless communications for IoT networks in the presence of eavesdroppers

    Get PDF
    The problem motivates this paper is that securing the critical data of 5G based wireless IoT network is of significant importance. Wireless 5G IoT systems consist of a large number of devices (low-cost legitimate users), which are of low complexity and under strict energy constraints. Physical layer security (PLS) schemes, along with energy harvesting, have emerged as a potential candidate that provides an effective solution to address this issue. During the data collection process of IoT, PHY security techniques can exploit the characteristics of the wireless channel to ensure secure communication. This paper focuses on optimizing the secrecy rate for simultaneous wireless information and power transfer (SWIPT) IoT system, considering that the malicious eavesdroppers can intercept the data. In particular, the main aim is to optimize the secrecy rate of the system under signal to interference noise ratio (SINR), energy harvesting (EH), and total transmits power constraints. We model our design as an optimization problem that advocates the use of additional noise to ensure secure communication and guarantees efficient wireless energy transfer. The primary problem is non-convex due to complex objective functions in terms of transmit beamforming matrix and power splitting ratios. We have considered both the perfect channel state information (CSI) and the imperfect CSI scenarios. To circumvent the non-convexity of the primary problem in perfect CSI case, we proposed a solution based on the concave-convex procedure (CCCP) iterative algorithm, which results in a maximum local solution for the secrecy rate. In the imperfect CSI scenario, we facilitate the use of S-procedure and present a solution based on the iterative successive convex approximation (SCA) approach. Simulation results present the validations of the proposed algorithms. The results provide an insightful view that the proposed iterative method based on the CCCP algorithm achieves higher secrecy rates and lower computational complexity in comparison to the other algorithms

    Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming

    Get PDF
    In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper's channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance.This work was supported by the National Science Foundation of China (No. 61501507), and the Jiangsu Provincial Natural Science Foundation of China (No. BK20150719). The work of Nan Yang is supported by the Australian Research Council Discovery Project (DP150103905)

    Performance of downlink NOMA with multiple antenna base station, full-duplex and D2D transmission

    Get PDF
    The implementation of non-orthogonal multiple access (NOMA) and transmit antenna selection (TAS) technique has considered in this paper since TAS-aware base station (BS) provides the low cost, low complexity, and high diversity gains. In this paper, we investigate performance of two users by deriving outage probability. The system performance benefits from design of TAS and full-duplex (FD) scheme applied at NOMA users, and bandwidth efficiency will be enhanced although self-interference exists due to FD. The main contribution lies in the exact expressions of outage probability which are derived to exhibit system performance. Different from the simulated parameters, the analytical results show that increasing number of transmit antennas at the BS is way to improve system performance

    Secrecy outage analysis for Alamouti space-time block coded non-orthogonal multiple access

    Get PDF
    This letter proposed a novel transmission technique for physical layer security by applying the Alamouti Space-Time Block Coded Non-orthogonal Multiple Access (STBC-NOMA) scheme. The secure outage performance under both perfect successive interference cancellation (pSIC) and imperfect successive interference cancellation (ipSIC) are investigated. In particular, novel exact and asymptotic expressions of secrecy outage probability are derived. Numerical and theoretical results are presented to corroborate the derived expressions and to demonstrate the superiority of STBC-NOMA and its ability to enhance the secrecy outage performance compared to conventional NOMA
    corecore