455 research outputs found

    On Secrecy Metrics for Physical Layer Security over Quasi-Static Fading Channels

    Get PDF
    Theoretical studies on physical layer security often adopt the secrecy outage probability as the performance metric for wireless communications over quasi-static fading channels. The secrecy outage probability has two limitations from a practical point of view: a) it does not give any insight into the eavesdropper's decodability of confidential messages; b) it cannot characterize the amount of information leakage to the eavesdropper when an outage occurs. Motivated by the limitations of the secrecy outage probability, we propose three new secrecy metrics for secure transmissions over quasi-static fading channels. The first metric establishes a link between the concept of secrecy outage and the decodability of messages at the eavesdropper. The second metric provides an error-probability-based secrecy metric which is typically used for the practical implementation of secure wireless systems. The third metric characterizes how much or how fast the confidential information is leaked to the eavesdropper. We show that the proposed secrecy metrics collectively give a more comprehensive understanding of physical layer security over fading channels and enable one to appropriately design secure communication systems with different views on how secrecy is measured.ARC Discovery Projects Grant DP15010390

    Practical LDPC coded modulation schemes for the fading broadcast channel with confidential messages

    Full text link
    The broadcast channel with confidential messages is a well studied scenario from the theoretical standpoint, but there is still lack of practical schemes able to achieve some fixed level of reliability and security over such a channel. In this paper, we consider a quasi-static fading channel in which both public and private messages must be sent from the transmitter to the receivers, and we aim at designing suitable coding and modulation schemes to achieve such a target. For this purpose, we adopt the error rate as a metric, by considering that reliability (security) is achieved when a sufficiently low (high) error rate is experienced at the receiving side. We show that some conditions exist on the system feasibility, and that some outage probability must be tolerated to cope with the fading nature of the channel. The proposed solution exploits low-density parity-check codes with unequal error protection, which are able to guarantee two different levels of protection against noise for the public and the private information, in conjunction with different modulation schemes for the public and the private message bits.Comment: 6 pages, 4 figures, to be presented at IEEE ICC'14 - Workshop on Wireless Physical Layer Securit

    Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy

    Full text link
    This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput and network-wide secrecy energy efficiency are optimized respectively. Various insights into the optimal fraction are further developed and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE Transactions on Wireless Communications, 201
    corecore