55,850 research outputs found

    Duality in mathematical programming.

    Get PDF
    In this thesis entitled, “Duality in Mathematical Programming”, the emphasis is given on formulation and conceptualization of the concepts of second-order duality, second-order mixed duality, second-order symmetric duality in a variety of nondifferentiable nonlinear programming under suitable second-order convexity/second-order invexity and generalized second-order convexity / generalized second-order invexity. Throughout the thesis nondifferentiablity occurs due to square root function and support functions. A support function which is more general than square root of a positive definite quadratic form. This thesis also addresses second-order duality in variational problems under suitable second-order invexity/secondorder generalized invexity. The duality results obtained for the variational problems are shown to be a dynamic generalization for thesis of nonlinear programming problem.Digital copy of Thesis.University of Kashmir

    On Second-Order Duality for Minimax Fractional Programming Problems with Generalized Convexity

    Get PDF
    We focus our study on a discussion of duality relationships of a minimax fractional programming problem with its two types of second-order dual models under the second-order generalized convexity type assumptions. Results obtained in this paper naturally unify and extend some previously known results on minimax fractional programming in the literature

    Pareto optimality conditions and duality for vector quadratic fractional optimization problems

    Get PDF
    One of the most important optimality conditions to aid in solving a vector optimization problem is the first-order necessary optimality condition that generalizes the Karush-Kuhn-Tucker condition. However, to obtain the sufficient optimality conditions, it is necessary to impose additional assumptions on the objective functions and on the constraint set. The present work is concerned with the constrained vector quadratic fractional optimization problem. It shows that sufficient Pareto optimality conditions and the main duality theorems can be established without the assumption of generalized convexity in the objective functions, by considering some assumptions on a linear combination of Hessian matrices instead. The main aspect of this contribution is the development of Pareto optimality conditions based on a similar second-order sufficient condition for problems with convex constraints, without convexity assumptions on the objective functions. These conditions might be useful to determine termination criteria in the development of algorithms.Coordenação de aperfeiçoamento de pessoal de nivel superior (Brasil)Ministerio de Ciencia y TecnologíaConselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil)Fundação de Amparo à Pesquisa do Estado de São Paul

    Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods

    Full text link
    This paper proposes a homogeneous second-order descent framework (HSODF) for nonconvex and convex optimization based on the generalized homogeneous model (GHM). In comparison to the Newton steps, the GHM can be solved by extremal symmetric eigenvalue procedures and thus grant an advantage in ill-conditioned problems. Moreover, GHM extends the ordinary homogeneous model (OHM) to allow adaptiveness in the construction of the aggregated matrix. Consequently, HSODF is able to recover some well-known second-order methods, such as trust-region methods and gradient regularized methods, while maintaining comparable iteration complexity bounds. We also study two specific realizations of HSODF. One is adaptive HSODM, which has a parameter-free O(ϵ3/2)O(\epsilon^{-3/2}) global complexity bound for nonconvex second-order Lipschitz continuous objective functions. The other one is homotopy HSODM, which is proven to have a global linear rate of convergence without strong convexity. The efficiency of our approach to ill-conditioned and high-dimensional problems is justified by some preliminary numerical results.Comment: improved writin

    On second order duality for nondifferentiable minimax fractional programming problems involving type-I functions

    Get PDF
    We introduce second order (C,α,ρ,d)(C,\alpha ,\rho ,d) type-I functions and formulate a second order dual model for a nondifferentiable minimax fractional programming problem. The usual duality relations are established under second order (F,α,ρ,d)/(C,α,ρ,d)(F,\alpha ,\rho ,d)/(C,\alpha ,\rho ,d) type-I assumptions. By citing a nontrivial example, it is shown that a second order (C,α,ρ,d)(C,\alpha ,\rho ,d) type-I function need not be (F,α,ρ,d)(F,\alpha ,\rho ,d) type-I. Several known results are obtained as special cases. References Ahmad, I., Husain, Z., Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity. J. Optimiz. Theory Appl. 129:255–275, 2006. doi:10.1007/s10957-006-9057-0 Ahmad, I., Husain, Z., Sharma, S., Second-order duality in nondifferentiable minmax programming involving type-I functions. J. Comput. Appl. Math. 215:91–102, 2008. doi:10.1016/j.cam.2007.03.022 Antczak, T., Generalized fractional minimax programming with BB-(p,r)(p, r)-invexity. Comput. Math. Appl. 56:1505–1525, 2008. doi:10.1016/j.camwa.2008.02.039 Chinchuluun, A., Yuan, D. H., Pardalos, P. M., Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity. Ann. Oper. Res. 154:133–147, 2007. doi:10.1007/s10479-007-0180-6 Du, D.-Z., Pardalos, P. M., Minimax and applications, Kluwer Academic Publishers, Dordrecht, 1995. http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.wkap.nl/prod/b/0-7923-3615-1 Hachimi, M., Aghezzaf, B., Second order duality in multiobjective programming involving generalized type I functions. Numer. Funct. Anal. Optimiz. 25:725–736, 2005. doi:10.1081/NFA-200045804 Husain, Z., Ahmad, I., Sharma, S., Second order duality for minmax fractional programming. Optimiz. Lett. 3:277–286, 2009. doi:10.1007/s11590-008-0107-4 Hu, Q., Yang, G., Jian, J., On second order duality for minimax fractional programming. Nonlinear Anal. 12:3509–3514, 2011. doi:10.1016/j.nonrwa.2011.06.011 Lai, H. C., Lee, J. C., On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 146:115–126, 2002. doi:10.1016/S0377-0427(02)00422-3 Lai, H. C., Liu, J. C., Tanaka, K., Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl. 230:311–328, 1999. doi:10.1006/jmaa.1998.6204 Liu, J. C., Wu, C. S., On minimax fractional optimality conditions with invexity. J. Math. Anal. Appl. 219:21–35, 1998. doi:10.1006/jmaa.1997.5786 Long, X. J., Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems with (C,α,ρ,d)(C,\alpha ,\rho ,d)-convexity. J. Optimiz. Theory Appl. 148:197–208, 2011. doi:10.1007/s10957-010-9740-z Schmitendorf, W. E., Necessary conditions and sufficient conditions for static minmax problems. J. Math. Anal. Appl. 57:683–693, 1977. doi:10.1016/0022-247X(77)90255-4 Sharma, S., Gulati, T. R., Second order duality in minmax fractional programming with generalized univexity. J. Glob. Optimiz. 52:161–169, 2012. doi:10.1007/s10898-011-9694-1 Yuan, D. H., Liu, X. L., Chinchuluun, A., Pardalos, P. M., Nondifferentiable minimax fractional programming problems with (C,α,ρ,d)(C,\alpha , \rho , d)-convexity. J. Optimiz. Theory Appl. 129:185–199, 2006. doi:10.1007/s10957-006-9052-
    corecore