17,162 research outputs found

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    On the Probability of Generating a Lattice

    Full text link
    We study the problem of determining the probability that m vectors selected uniformly at random from the intersection of the full-rank lattice L in R^n and the window [0,B)^n generate Λ\Lambda when B is chosen to be appropriately large. This problem plays an important role in the analysis of the success probability of quantum algorithms for solving the Discrete Logarithm Problem in infrastructures obtained from number fields and also for computing fundamental units of number fields. We provide the first complete and rigorous proof that 2n+1 vectors suffice to generate L with constant probability (provided that B is chosen to be sufficiently large in terms of n and the covering radius of L and the last n+1 vectors are sampled from a slightly larger window). Based on extensive computer simulations, we conjecture that only n+1 vectors sampled from one window suffice to generate L with constant success probability. If this conjecture is true, then a significantly better success probability of the above quantum algorithms can be guaranteed.Comment: 18 page
    • …
    corecore