581 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Identifying the shortest log trucking routes and optimizing those constrained by low-weight bridges in Mississippi

    Get PDF
    Timber haulage in Mississippi incurs the greatest portion of logging expenses because of a myriad of closed and posted (restricted) bridges. This study utilized Dijkstra\u27s algorithm method in ArcGIS Pro to derive 129 feasible shortest optimal trucking routes between 46 harvest sites and 32 softwood sawmills in Mississippi. Among these routes, 30 of them had restricted bridges along the way; however, only 13 viable alternative routes were identified due to distance and weight restrictions. The additional trucking distance for alternative routes ranged between 1.5 to 12.9 miles, whose effect on transportation cost was determined using a Mixed Integer Linear Programming optimization model incorporating weight limits of the restricted bridges. Restricted bridges along optimal routes resulted in an additional transportation cost of $4.09 million, representing a 4.07% increase in total transportation cost or 0.34 per ton of softwood sawlogs transported. All these cost increases were exclusive to softwood sawlogs

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments

    Implicit Decomposition for Write-Efficient Connectivity Algorithms

    Full text link
    The future of main memory appears to lie in the direction of new technologies that provide strong capacity-to-performance ratios, but have write operations that are much more expensive than reads in terms of latency, bandwidth, and energy. Motivated by this trend, we propose sequential and parallel algorithms to solve graph connectivity problems using significantly fewer writes than conventional algorithms. Our primary algorithmic tool is the construction of an o(n)o(n)-sized "implicit decomposition" of a bounded-degree graph GG on nn nodes, which combined with read-only access to GG enables fast answers to connectivity and biconnectivity queries on GG. The construction breaks the linear-write "barrier", resulting in costs that are asymptotically lower than conventional algorithms while adding only a modest cost to querying time. For general non-sparse graphs on mm edges, we also provide the first o(m)o(m) writes and O(m)O(m) operations parallel algorithms for connectivity and biconnectivity. These algorithms provide insight into how applications can efficiently process computations on large graphs in systems with read-write asymmetry

    Scheduling algorithms for throughput maximization in data networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 215-226).This thesis considers the performance implications of throughput optimal scheduling in physically and computationally constrained data networks. We study optical networks, packet switches, and wireless networks, each of which has an assortment of features and constraints that challenge the design decisions of network architects. In this work, each of these network settings are subsumed under a canonical model and scheduling framework. Tools of queueing analysis are used to evaluate network throughput properties, and demonstrate throughput optimality of scheduling and routing algorithms under stochastic traffic. Techniques of graph theory are used to study network topologies having desirable throughput properties. Combinatorial algorithms are proposed for efficient resource allocation. In the optical network setting, the key enabling technology is wavelength division multiplexing (WDM), which allows each optical fiber link to simultaneously carry a large number of independent data streams at high rate. To take advantage of this high data processing potential, engineers and physicists have developed numerous technologies, including wavelength converters, optical switches, and tunable transceivers.(cont.) While the functionality provided by these devices is of great importance in capitalizing upon the WDM resources, a major challenge exists in determining how to configure these devices to operate efficiently under time-varying data traffic. In the WDM setting, we make two main contributions. First, we develop throughput optimal joint WDM reconfiguration and electronic-layer routing algorithms, based on maxweight scheduling. To mitigate the service disruption associated with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we develop analytic tools to quantify the maximum throughput achievable in general network settings. Our approach is to characterize several geometric features of the maximum region of arrival rates that can be supported in the network. In the packet switch setting, we observe through numerical simulation the attractive throughput properties of a simple maximal weight scheduler. Subsequently, we consider small switches, and analytically demonstrate the attractive throughput properties achievable using maximal weight scheduling. We demonstrate that such throughput properties may not be sustained in larger switches.(cont.) In the wireless network setting, mesh networking is a promising technology for achieving connectivity in local and metropolitan area networks. Wireless access points and base stations adhering to the IEEE 802.11 wireless networking standard can be bought off the shelf at little cost, and can be configured to access the Internet in minutes. With ubiquitous low-cost Internet access perceived to be of tremendous societal value, such technology is naturally garnering strong interest. Enabling such wireless technology is thus of great importance. An important challenge in enabling mesh networks, and many other wireless network applications, results from the fact that wireless transmission is achieved by broadcasting signals through the air, which has the potential for interfering with other parts of the network. Furthermore, the scarcity of wireless transmission resources implies that link activation and packet routing should be effected using simple distributed algorithms. We make three main contributions in the wireless setting. First, we determine graph classes under which simple, distributed, maximal weight schedulers achieve throughput optimality.(cont.) Second, we use this acquired knowledge of graph classes to develop combinatorial algorithms, based on matroids, for allocating channels to wireless links, such that each channel can achieve maximum throughput using simple distributed schedulers. Third, we determine new conditions under which distributed algorithms for joint link activation and routing achieve throughput optimality.by Andrew Brzezinski.Ph.D

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an Parallelität und Heterogenität. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die Gesamtausführungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die Zuverlässigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen Einschränkungen und Randbedingungen des Systems berücksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese Komplexität heterogener Systeme macht es unmöglich, alle potenziellen Systemzustände und Umwelteinflüsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten Kühlkapazitäten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die Wärmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungünstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungünstige oder fehlerhafte Systemzustände vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die Wärmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzuführen. Ein Konzept, das diese komplexe Aufgabe für den Entwickler übernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an Veränderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwünschten Ergebnissen führen. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und Widerstandsfähigkeit gegenüber äußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu überwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen über das zukünftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwählen und auszulösen, die das System optimieren und unerwünschte Zustände vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu übertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat für die Umsetzung des Organic Computing-Ansatzes, da sie bereits die Ausführung von Anwendungen überwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: • Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern • Vorhersage zukünftiger Systemzustände durch Analyse des vergangenen Verhaltens • Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von Systemzuständen auf zwei Arten. Zunächst führe ich eine neuartige heuristische Metrik zur Berechnung der Zuverlässigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des Ausführungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen Ausführungen einer Anwendung zu berechnen, um eine bestimmte Ergebniszuverlässigkeit, also eine Mindestwahrscheinlichkeit für ein korrektes Ergebnis, zu gewährleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der für OpenMP-Tasks notwendigen Profiling-Durchläufe durch Thread-Interpolation und Überprüfungen des Skalierungsverhaltens. Zusätzlich untersuche ich die Vorhersage von OpenCL Task-Ausführungszeiten. Die Prädiktoren der Ausführungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukünftige Systemzustände vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der Ausführungsdatenbank ermöglicht dies die Schätzung der anstehenden Kosten, die das System zu bewältigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste Prädiktor zielt darauf ab, neue Instanzen unabhängiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet Ausführungsmuster abhängiger Anwendungen und sagt auf dieser Grundlage zukünftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-Prädiktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die Systemüberwachung und die Vorhersage zukünftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. Beschränkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgeführt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefügt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion für List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen für dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die Prioritäten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrücken. Da statische Prioritäten in stark ausgelasteten Systemen zu Starvation führen können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die Prioritäten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit über alle Tasks und die Wartezeit für Tasks mit niedrigerer Priorität. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an Parallelität zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur Ausführung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgeführt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfügt, prüft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer Ausführung begonnen haben, neu auf Ausführungseinheiten abzubilden. Zusammenfassend lässt sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die Komplexität für Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz für eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden Beiträge zur Erweiterung des Stands der Forschung: • Einführung einer neuartigen heuristischen Metrik zur Messung der Zuverlässigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlässig zu erkennen. Darüber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestätigt. • Vorschlag eines Vorhersagemodells für die Ausführungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwählen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausführt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. • Bereitstellung von zwei Prädiktoren für kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhängige Tasks, die ständig neue Task-Instanzen erstellen, der zweite abhängige Anwendungen, die Ausführungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% für sporadische und 0,002 %0,002 \,\% für periodische Tasks. Darüber hinaus werden Tasks mit einem aperiodischen Ausführungsschema zuverlässig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% für die Vorhersage der nächsten anstehenden Anwendung und deren Startzeit. • Einführung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthält u.a. ein modifiziertes XCS, für dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell für diesen Zweck entwickelten Simulators zur Berechnung von Task-Ausführungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion für List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fünfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur über alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. • Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings für einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-Prioritäten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-Prioritäten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer Priorität um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgeführt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s
    • …
    corecore