569 research outputs found

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    Linear systems solvers - recent developments and implications for lattice computations

    Get PDF
    We review the numerical analysis' understanding of Krylov subspace methods for solving (non-hermitian) systems of equations and discuss its implications for lattice gauge theory computations using the example of the Wilson fermion matrix. Our thesis is that mature methods like QMR, BiCGStab or restarted GMRES are close to optimal for the Wilson fermion matrix. Consequently, preconditioning appears to be the crucial issue for further improvements.Comment: 7 pages, LaTeX using espcrc2.sty, 2 figures, 9 eps-files, Talk presented at LATTICE96(algorithms), submitted to Nucl. Phys. B, Proc. Supp

    Preconditioning harmonic unsteady potential flow calculations

    Get PDF
    This paper considers finite element discretisations of the Helmholtz equation and its generalisation arising from harmonic acoustics perturbations to a non-uniform steady potential flow. A novel elliptic, positive definite preconditioner, with a multigrid implementation, is used to accelerate the iterative convergence of Krylov subspace solvers. Both theory and numerical results show that for a model 1D Helmholtz test problem the preconditioner clusters the discrete system's eigenvalues and lowers its condition number to a level independent of grid resolution. For the 2D Helmholtz equation, grid independent convergence is achieved using a QMR Krylov solver, significantly outperforming the popular SSOR preconditioner. Impressive results are also presented on more complex domains, including an axisymmetric aircraft engine inlet with non-stagnant mean flow and modal boundary conditions

    ParMooN - a modernized program package based on mapped finite elements

    Get PDF
    {\sc ParMooN} is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor {\sc MooNMD} \cite{JM04}: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of {\sc ParMooN}. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library {\sc PETSc}. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.Comment: partly supported by European Union (EU), Horizon 2020, Marie Sk{\l}odowska-Curie Innovative Training Networks (ITN-EID), MIMESIS, grant number 67571

    SSOR preconditioning in simulations of the QCD Schr\"odinger functional

    Get PDF
    We report on a parallelized implementation of SSOR preconditioning for O(a) improved lattice QCD with Schr\"odinger functional boundary conditions. Numerical simulations in the quenched approximation at parameters in the light quark mass region demonstrate that a performance gain of a factor \sim 1.5 over even-odd preconditioning can be achieved.Comment: 15 pages, latex2e, 4 Postscript figures, uses packages elsart and epsfi
    corecore