236 research outputs found

    Quality comparison of the HEVC and VP9 encoders performance

    Get PDF
    This paper reports a comparison between two recent video codecs, namely the HEVC and the VP9, using High Definition Video Sequences encoded with different bit rates. A subjective test for the evaluation of the provided Quality of Experience is reported. The video sequences were shown to a panel of subjects on a High Definition LED display and the subjective tests were performed using a Single Stimulus Methodology. The results shown that the HEVC encoder provides a better visual quality on low bit rates than the VP9. Similar performance was obtained for visually lossless conditions, although the HEVC requires lower bit rates to reach that level. Moreover, the correlation of the subjective evaluation and three tested objective metrics (PSNR, SSIM, and FSIM) revealed a good representation of the subjective results, particularly the SSIM and the FSIM metrics.info:eu-repo/semantics/publishedVersio

    Depth map compression via 3D region-based representation

    Get PDF
    In 3D video, view synthesis is used to create new virtual views between encoded camera views. Errors in the coding of the depth maps introduce geometry inconsistencies in synthesized views. In this paper, a new 3D plane representation of the scene is presented which improves the performance of current standard video codecs in the view synthesis domain. Two image segmentation algorithms are proposed for generating a color and depth segmentation. Using both partitions, depth maps are segmented into regions without sharp discontinuities without having to explicitly signal all depth edges. The resulting regions are represented using a planar model in the 3D world scene. This 3D representation allows an efficient encoding while preserving the 3D characteristics of the scene. The 3D planes open up the possibility to code multiview images with a unique representation.Postprint (author's final draft

    Video Quality Assessment in Video Streaming Services:Encoder Performance Comparison

    Get PDF

    Non-local Attention Optimized Deep Image Compression

    Full text link
    This paper proposes a novel Non-Local Attention Optimized Deep Image Compression (NLAIC) framework, which is built on top of the popular variational auto-encoder (VAE) structure. Our NLAIC framework embeds non-local operations in the encoders and decoders for both image and latent feature probability information (known as hyperprior) to capture both local and global correlations, and apply attention mechanism to generate masks that are used to weigh the features for the image and hyperprior, which implicitly adapt bit allocation for different features based on their importance. Furthermore, both hyperpriors and spatial-channel neighbors of the latent features are used to improve entropy coding. The proposed model outperforms the existing methods on Kodak dataset, including learned (e.g., Balle2019, Balle2018) and conventional (e.g., BPG, JPEG2000, JPEG) image compression methods, for both PSNR and MS-SSIM distortion metrics
    • …
    corecore