5 research outputs found

    On SDoF of Multi-Receiver Wiretap Channel With Alternating CSIT

    Full text link
    We study the problem of secure transmission over a Gaussian multi-input single-output (MISO) two receiver channel with an external eavesdropper, under the assumption that the state of the channel which is available to each receiver is conveyed either perfectly (PP) or with delay (DD) to the transmitter. Denoting by S1S_1, S2S_2, and S3S_3 the channel state information at the transmitter (CSIT) of user 1, user 2, and eavesdropper, respectively, the overall CSIT can then alternate between eight possible states, i.e., (S1,S2,S3)∈{P,D}3(S_1,S_2,S_3) \in \{P,D\}^3. We denote by λS1S2S3\lambda_{S_1 S_2 S_3} the fraction of time during which the state S1S2S3S_1S_2S_3 occurs. Under these assumptions, we first consider the Gaussian MISO wiretap channel and characterize the secure degrees of freedom (SDoF). Next, we consider the general multi-receiver setup and characterize the SDoF region of fixed hybrid states PPDPPD, PDPPDP, and DDPDDP. We then focus our attention on the symmetric case in which λPDD=λDPD\lambda_{PDD}=\lambda_{DPD}. For this case, we establish bounds on SDoF region. The analysis reveals that alternating CSIT allows synergistic gains in terms of SDoF; and shows that, by opposition to encoding separately over different states, joint encoding across the states enables strictly better secure rates. Furthermore, we specialize our results for the two receivers channel with an external eavesdropper to the two-user broadcast channel. We show that, the synergistic gains in terms of SDoF by alternating CSIT is not restricted to multi-receiver wiretap channels; and, can also be harnessed under broadcast setting.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    Secure Degrees of Freedom of MIMO X-Channels with Output Feedback and Delayed CSIT

    Get PDF
    We investigate the problem of secure transmission over a two-user multi-input multi-output (MIMO) X-channel in which channel state information is provided with one-unit delay to both transmitters (CSIT), and each receiver feeds back its channel output to a different transmitter. We refer to this model as MIMO X-channel with asymmetric output feedback and delayed CSIT. The transmitters are equipped with M-antennas each, and the receivers are equipped with N-antennas each. For this model, accounting for both messages at each receiver, we characterize the optimal sum secure degrees of freedom (SDoF) region. We show that, in presence of asymmetric output feedback and delayed CSIT, the sum SDoF region of the MIMO X-channel is same as the SDoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver and delayed CSIT. This result shows that, upon availability of asymmetric output feedback and delayed CSIT, there is no performance loss in terms of sum SDoF due to the distributed nature of the transmitters. Next, we show that this result also holds if only output feedback is conveyed to the transmitters, but in a symmetric manner, i.e., each receiver feeds back its output to both transmitters and no CSIT. We also study the case in which only asymmetric output feedback is provided to the transmitters, i.e., without CSIT, and derive a lower bound on the sum SDoF for this model. Furthermore, we specialize our results to the case in which there are no security constraints. In particular, similar to the setting with security constraints, we show that the optimal sum DoF region of the (M,M,N,N)--MIMO X-channel with asymmetric output feedback and delayed CSIT is same as the DoF region of a two-user MIMO BC with 2M-antennas at the transmitter, N-antennas at each receiver, and delayed CSIT. We illustrate our results with some numerical examples.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    Secure Retrospective Interference Alignment

    Full text link
    In this paper, the KK-user interference channel with secrecy constraints is considered with delayed channel state information at transmitters (CSIT). We propose a novel secure retrospective interference alignment scheme in which the transmitters carefully mix information symbols with artificial noises to ensure confidentiality. Achieving positive secure degrees of freedom (SDoF) is challenging due to the delayed nature of CSIT, and the distributed nature of the transmitters. Our scheme works over two phases: phase one in which each transmitter sends information symbols mixed with artificial noises, and repeats such transmission over multiple rounds. In the next phase, each transmitter uses delayed CSIT of the previous phase and sends a function of the net interference and artificial noises (generated in previous phase), which is simultaneously useful for all receivers. These phases are designed to ensure the decodability of the desired messages while satisfying the secrecy constraints. We present our achievable scheme for three models, namely: 1) KK-user interference channel with confidential messages (IC-CM), and we show that 12(K−6)\frac{1}{2} (\sqrt{K} -6) SDoF is achievable, 2) KK-user interference channel with an external eavesdropper (IC-EE), and 3) KK-user IC with confidential messages and an external eavesdropper (IC-CM-EE). We show that for the KK-user IC-EE, 12(K−3)\frac{1}{2} (\sqrt{K} -3) SDoF is achievable, and for the KK-user IC-CM-EE, 12(K−6)\frac{1}{2} (\sqrt{K} -6) is achievable. To the best of our knowledge, this is the first result on the KK-user interference channel with secrecy constrained models and delayed CSIT that achieves a SDoF which scales with KK, the number of users.Comment: Submitted to IEEE Transactions on Wireless Communication
    corecore