1,170 research outputs found

    The role of brine release and sea ice drift for winter mixing and sea ice formation in the Baltic Sea

    Get PDF

    Operational SAR-based sea ice drift monitoring over the Baltic Sea

    Get PDF
    An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR) images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine) with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented

    Cryosphere Applications

    Get PDF
    Synthetic aperture radar (SAR) provides large coverage and high resolution, and it has been proven to be sensitive to both surface and near-surface features related to accumulation, ablation, and metamorphism of snow and firn. Exploiting this sensitivity, SAR polarimetry and polarimetric interferometry found application to land ice for instance for the estimation of wave extinction (which relates to sub surface ice volume structure) and for the estimation of snow water equivalent (which relates to snow density and depth). After presenting these applications, the Chapter proceeds by reviewing applications of SAR polarimetry to sea ice for the classification of different ice types, the estimation of thickness, and the characterisation of its surface. Finally, an application to the characterisation of permafrost regions is considered. For each application, the used (model-based) decomposition and polarimetric parameters are critically described, and real data results from relevant airborne campaigns and space borne acquisitions are reported

    TanDEM-X multiparametric data features in sea ice classification over the Baltic sea

    Get PDF
    In this study, we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea. A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis. Backscatter intensity, interferometric coherence magnitude, and interferometric phase have been used as informative features in several classification experiments. Various combinations of classification features were evaluated using Maximum likelihood (ML), Random Forests (RF) and Support Vector Machine (SVM) classifiers to achieve the best possible discrimination between open water and several sea ice types (undeformed ice, ridged ice, moderately deformed ice, brash ice, thick level ice, and new ice). Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification performance compared to using only backscatter-intensity. The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies, however, at the expense of somewhat longer processing time. The best overall accuracy (OA) for three methodologies were achieved using combination of all tested features were 71.56, 72.93, and 72.91% for ML, RF and SVM classifiers, respectively. Compared to OAs of 62.28, 66.51, and 63.05% using only backscatter intensity, this indicates strong benefit of SAR interferometry in discriminating different types of sea ice. In contrast to several earlier studies, we were particularly able to successfully discriminate open water and new ice classes.Peer reviewe

    A Study of Landfast Ice with Sentinel-1 Repeat-Pass Interferometry over the Baltic Sea

    Get PDF
    Mapping of fast ice displacement and investigating sea ice rheological behavior is a major open topic in coastal ice engineering and sea ice modeling. This study presents first results on Sentinel-1 repeat-pass space borne synthetic aperture radar interferometry (InSAR) in the Gulf of Bothnia over the fast ice areas. An InSAR pair acquired in February 2015 with a temporal baseline of 12 days has been studied here in detail. According to our results, the surface of landfast ice in the study area was stable enough to preserve coherence over the 12-day baseline, while previous InSAR studies over the fast ice used much shorter temporal baselines. The advantage of longer temporal baseline is in separating the fast ice from drift ice and detecting long term trends in deformation maps. The interferogram showed displacement of fast ice on the order of 40 cm in the study area. Parts of the displacements were attributed to forces caused by sea level tilt, currents, and thermal expansion, but the main factor of the displacement seemed to be due to compression of the drift ice driven by southwest winds with high speed. Further interferometric phase and the coherence measurements over the fast ice are needed in the future for understanding sea ice mechanism and establishing sustainability of the presented InSAR approach for monitoring dynamics of the landfast ice with Sentinel-1 data.Peer reviewe

    Geostatistical and statistical classification of sea-ice properties and provinces from SAR data

    Get PDF
    Recent drastic reductions in the Arctic sea-ice cover have raised an interest in understanding the role of sea ice in the global system as well as pointed out a need to understand the physical processes that lead to such changes. Satellite remote-sensing data provide important information about remote ice areas, and Synthetic Aperture Radar (SAR) data have the advantages of penetration of the omnipresent cloud cover and of high spatial resolution. A challenge addressed in this paper is how to extract information on sea-ice types and sea-ice processes from SAR data. We introduce, validate and apply geostatistical and statistical approaches to automated classification of sea ice from SAR data, to be used as individual tools for mapping sea-ice properties and provinces or in combination. A key concept of the geostatistical classification method is the analysis of spatial surface structures and their anisotropies, more generally, of spatial surface roughness, at variable, intermediate-sized scales. The geostatistical approach utilizes vario parameters extracted from directional vario functions, the parameters can be mapped or combined into feature vectors for classification. The method is flexible with respect to window sizes and parameter types and detects anisotropies. In two applications to RADARSAT and ERS-2 SAR data from the area near Point Barrow, Alaska, it is demonstrated that vario-parameter maps may be utilized to distinguish regions of different sea-ice characteristics in the Beaufort Sea, the Chukchi Sea and in Elson Lagoon. In a third and a fourth case study the analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification. Field measurements and high-resolution aerial observations serve as basis for validation of the geostatistical-statistical classification methods. A combination of supervised classification and vario-parameter mapping yields best results, correctly identifying several sea-ice provinces in the shore-fast ice and the pack ice. Notably, sea ice does not have to be static to be classifiable with respect to spatial structures. In consequence, the geostatistical-statistical classification may be applied to detect changes in ice dynamics, kinematics or environmental changes, such as increased melt ponding, increased snowfall or changes in the equilibrium line

    Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar

    Get PDF
    We present a method to combine CryoSat-2 (CS2) radar altimeter and Sentinel-1 synthetic aperture radar (SAR) data to obtain sea ice thickness (SIT) estimates for the Barents and Kara seas. From the viewpoint of tactical navigation, along-track altimeter SIT estimates are sparse, and the goal of our study is to develop a method to interpolate altimeter SIT measurements between CS2 ground tracks. The SIT estimation method developed here is based on the interpolation of CS2 SIT utilizing SAR segmentation and segmentwise SAR texture features. The SIT results are compared to SIT data derived from the AARI ice charts; to ORAS5, PIOMAS and TOPAZ4 ocean-sea ice data assimilation system reanalyses; to combined CS2 and Soil Moisture and Ocean Salinity (SMOS) radiometer weekly SIT (CS2SMOS SIT) charts; and to the daily MODIS (Moderate Resolution Imaging Spectro-radiometer) SIT chart. We studied two approaches: CS2 directly interpolated to SAR segments and CS2 SIT interpolated to SAR segments with mapping of the CS2 SIT distributions to correspond to SIT distribution of the PIOMAS ice model. Our approaches yield larger spatial coverage and better accuracy compared to SIT estimates based on either CS2 or SAR data alone. The agreement with modelled SIT is better than with the CS2SMOS SIT. The average differences when compared to ice models and the AARI ice chart SIT were typically tens of centimetres, and there was a significant positive bias when compared to the AARI SIT (on average 27 cm) and a similar bias (24 cm) when compared to the CS2SMOS SIT. Our results are directly applicable to the future CRISTAL mission and Copernicus programme SAR missions.Peer reviewe

    Detection and classification of sea ice from spaceborne multi-frequency synthetic aperture radar imagery and radar altimetry

    Get PDF
    The sea ice cover in the Arctic is undergoing drastic changes. Since the start of satellite observations by microwave remote sensing in the late 1970\u27s, the maximum summer sea ice extent has been decreasing and thereby causing a generally thinner and younger sea ice cover. Spaceborne radar remote sensing facilitates the determination of sea ice properties in a changing climate with the high spatio-temporal resolution necessary for a better understanding of the ongoing processes as well as safe navigation and operation in ice infested waters.The work presented in this thesis focuses on the one hand on synergies of multi-frequency spaceborne synthetic aperture radar (SAR) imagery for sea ice classification. On the other hand, the fusion of radar altimetry observations with near-coincidental SAR imagery is investigated for its potential to improve 3-dimensional sea ice information retrieval.Investigations of ice/water classification of C- and L-band SAR imagery with a feed-forward neural network demonstrated the capabilities of both frequencies to outline the sea ice edge with good accuracy. Classification results also indicate that a combination of both frequencies can improve the identification of thin ice areas within the ice pack compared to C-band alone. Incidence angle normalisation has proven to increase class separability of different ice types. Analysis of incidence angle dependence between 19-47\ub0 at co- and cross-polarisation from Sentinel-1 C-band images closed a gap in existing slope estimates at cross-polarisation for multiyear sea ice and confirms values obtained in other regions of the Arctic or with different sensors. Furthermore, it demonstrated that insufficient noise correction of the first subswath at cross-polarisation increased the slope estimates by 0.01 dB/1\ub0 for multiyear ice. The incidence angle dependence of the Sentinel-1 noise floor affected smoother first-year sea ice and made the first subswath unusable for reliable incidence angle estimates in those cases.Radar altimetry can complete the 2-dimensional sea ice picture with thickness information. By comparison of SAR imagery with altimeter waveforms from CryoSat-2, it is demonstrated that waveforms respond well to changes of the sea ice surface in the order of a few hundred metres to a few kilometres. Freeboard estimates do however not always correspond to these changes especially when mixtures of different ice types are found within the footprint. Homogeneous ice floes of about 10 km are necessary for robust averaged freeboard estimates. The results demonstrate that multi-frequency and multi-sensor approaches open up for future improvements of sea ice retrievals from radar remote sensing techniques, but access to in-situ data for training and validation will be critical

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version
    • …
    corecore