734 research outputs found

    Analytic urns

    Full text link
    This article describes a purely analytic approach to urn models of the generalized or extended P\'olya-Eggenberger type, in the case of two types of balls and constant ``balance,'' that is, constant row sum. The treatment starts from a quasilinear first-order partial differential equation associated with a combinatorial renormalization of the model and bases itself on elementary conformal mapping arguments coupled with singularity analysis techniques. Probabilistic consequences in the case of ``subtractive'' urns are new representations for the probability distribution of the urn's composition at any time n, structural information on the shape of moments of all orders, estimates of the speed of convergence to the Gaussian limit and an explicit determination of the associated large deviation function. In the general case, analytic solutions involve Abelian integrals over the Fermat curve x^h+y^h=1. Several urn models, including a classical one associated with balanced trees (2-3 trees and fringe-balanced search trees) and related to a previous study of Panholzer and Prodinger, as well as all urns of balance 1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit representations in terms of Weierstra\ss elliptic functions: these elliptic models appear precisely to correspond to regular tessellations of the Euclidean plane.Comment: Published at http://dx.doi.org/10.1214/009117905000000026 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Aspekte bei der Einfügung in Zufallsbäume

    Full text link

    Rebalancing operations for deletions in AVL-trees

    Full text link

    Making data structures persistent

    Full text link

    The shape of random tanglegrams

    Full text link
    A tanglegram consists of two binary rooted trees with the same number of leaves and a perfect matching between the leaves of the trees. We show that the two halves of a random tanglegram essentially look like two independently chosen random plane binary trees. This fact is used to derive a number of results on the shape of random tanglegrams, including theorems on the number of cherries and generally occurrences of subtrees, the root branches, the number of automorphisms, and the height. For each of these, we obtain limiting probabilities or distributions. Finally, we investigate the number of matched cherries, for which the limiting distribution is identified as well

    Transactional Data Structures

    Get PDF

    Combinatorial families of multilabelled increasing trees and hook-length formulas

    Full text link
    In this work we introduce and study various generalizations of the notion of increasingly labelled trees, where the label of a child node is always larger than the label of its parent node, to multilabelled tree families, where the nodes in the tree can get multiple labels. For all tree classes we show characterizations of suitable generating functions for the tree enumeration sequence via differential equations. Furthermore, for several combinatorial classes of multilabelled increasing tree families we present explicit enumeration results. We also present multilabelled increasing tree families of an elliptic nature, where the exponential generating function can be expressed in terms of the Weierstrass-p function or the lemniscate sine function. Furthermore, we show how to translate enumeration formulas for multilabelled increasing trees into hook-length formulas for trees and present a general "reverse engineering" method to discover hook-length formulas associated to such tree families.Comment: 37 page
    corecore