44 research outputs found

    Parametric Robust Control and System Identification: Unified Approach

    Get PDF
    During the period of this support, a new control system design and analysis method has been studied. This approach deals with control systems containing uncertainties that are represented in terms of its transfer function parameters. Such a representation of the control system is common and many physical parameter variations fall into this type of uncertainty. Techniques developed here are capable of providing nonconservative analysis of such control systems with parameter variations. We have also developed techniques to deal with control systems when their state space representations are given rather than transfer functions. In this case, the plant parameters will appear as entries of state space matrices. Finally, a system modeling technique to construct such systems from the raw input - output frequency domain data has been developed

    Systems Structure and Control

    Get PDF
    The title of the book System, Structure and Control encompasses broad field of theory and applications of many different control approaches applied on different classes of dynamic systems. Output and state feedback control include among others robust control, optimal control or intelligent control methods such as fuzzy or neural network approach, dynamic systems are e.g. linear or nonlinear with or without time delay, fixed or uncertain, onedimensional or multidimensional. The applications cover all branches of human activities including any kind of industry, economics, biology, social sciences etc

    Topics in Automotive Rollover Prevention: Robust and Adaptive Switching Strategies for Estimation and Control

    Get PDF
    The main focus in this thesis is the analysis of alternative approaches for estimation and control of automotive vehicles based on sound theoretical principles. Of particular importance is the problem rollover prevention, which is an important problem plaguing vehicles with a high center of gravity (CG). Vehicle rollover is, statistically, the most dangerous accident type, and it is difficult to prevent it due to the time varying nature of the problem. Therefore, a major objective of the thesis is to develop the necessary theoretical and practical tools for the estimation and control of rollover based on robust and adaptive techniques that are stable with respect to parameter variations. Given this background, we first consider an implementation of the multiple model switching and tuning (MMST) algorithm for estimating the unknown parameters of automotive vehicles relevant to the roll and the lateral dynamics including the position of CG. This results in high performance estimation of the CG as well as other time varying parameters, which can be used in tuning of the active safety controllers in real time. We then look into automotive rollover prevention control based on a robust stable control design methodology. As part of this we introduce a dynamic version of the load transfer ratio (LTR) as a rollover detection criterion and then design robust controllers that take into account uncertainty in the CG position. As the next step we refine the controllers by integrating them with the multiple model switched CG position estimation algorithm. This results in adaptive controllers with higher performance than the robust counterparts. In the second half of the thesis we analyze extensions of certain theoretical results with important implications for switched systems. First we obtain a non-Lyapunov stability result for a certain class of linear discrete time switched systems. Based on this result, we suggest switched controller synthesis procedures for two roll dynamics enhancement control applications. One control design approach is related to modifying the dynamical response characteristics of the automotive vehicle while guaranteeing the switching stability under parametric variations. The other control synthesis method aims to obtain transient free reference tracking of vehicle roll dynamics subject to parametric switching. In a later discussion, we consider a particular decentralized control design procedure based on vector Lyapunov functions for simultaneous, and structurally robust model reference tracking of both the lateral and the roll dynamics of automotive vehicles. We show that this controller design approach guarantees the closed loop stability subject to certain types of structural uncertainty. Finally, assuming a purely theoretical pitch, and motivated by the problems considered during the course of the thesis, we give new stability results on common Lyapunov solution (CLS) existence for two classes of switching linear systems; one is concerned with switching pair of systems in companion form and with interval uncertainty, and the other is concerned with switching pair of companion matrices with general inertia. For both problems we give easily verifiable spectral conditions that are sufficient for the CLS existence. For proving the second result we also obtain a certain generalization of the classical Kalman-Yacubovic-Popov lemma for matrices with general inertia

    Control Systems: New Approaches to Analysis and Design

    Get PDF
    This dissertation deals with two open problems in control theory. The first problem concerns the synthesis of fixed structure controllers for Linear Time Invariant (LTI) systems. The problem of synthesizing fixed structure/order controllers has practical importance when simplicity, hardware limitations, or reliability in the implementation of a controller dictates a low order of stabilization. A new method is proposed to simplify the calculation of the set of fixed structure stabilizing controllers for any given plant. The method makes use of computational algebraic geometry techniques and sign-definite decomposition method. Although designing a stabilizing controller of a fixed structure is important, in many practical applications it is also desirable to control the transient response of the closed loop system. This dissertation proposes a novel approach to approximate the set of stabilizing Proportional-Integral-Derivative (PID) controllers guaranteeing transient response specifications. Such desirable set of PID controllers can be constructed upon an application of Widder's theorem and Markov-Lukacs representation of non-negative polynomials. The second problem explored in this dissertation handles the design and control of linear systems without requiring the knowledge of the mathematical model of the system and directly from a small set of measurements, processed appropriately. The traditional approach to deal with the analysis and control of complex systems has been to describe them mathematically with sets of algebraic or differential equations. The objective of the proposed approach is to determine the design variables directly from a small set of measurements. In particular, it will be shown that the functional dependency of any system variable on any set of system design parameters can be determined by a small number of measurements. Once the functional dependency is obtained, it can be used to extract the values of the design parameters

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    A Data-Driven Frequency-Domain Approach for Robust Controller Design via Convex Optimization

    Get PDF
    The objective of this dissertation is to develop data-driven frequency-domain methods for designing robust controllers through the use of convex optimization algorithms. Many of today's industrial processes are becoming more complex, and modeling accurate physical models for these plants using first principles may be impossible. With the increased developments in the computing world, large amounts of measured data can be easily collected and stored for processing purposes. Data can also be collected and used in an on-line fashion. Thus it would be very sensible to make full use of this data for controller design, performance evaluation, and stability analysis. The design methods imposed in this work ensure that the dynamics of a system are captured in an experiment and avoids the problem of unmodeled dynamics associated with parametric models. The devised methods consider robust designs for both linear-time-invariant (LTI) single-input-single-output (SISO) systems and certain classes of nonlinear systems. In this dissertation, a data-driven approach using the frequency response function of a system is proposed for designing robust controllers with H∞ performance. Necessary and sufficient conditions are derived for obtaining H∞ performance while guaranteeing the closed-loop stability of a system. A convex optimization algorithm is implemented to obtain the controller parameters which ensure system robustness; the controller is robust with respect to the frequency-dependent uncertainties of the frequency response function. For a certain class of nonlinearities, the proposed method can be used to obtain a best-linear-approximation with an associated frequency dependent uncertainty to guarantee the stability and performance for the underlying linear system that is subject to nonlinear distortions. The concepts behind these design methods are then used to devise necessary and sufficient conditions for ensuring the closed-loop stability of systems with sector-bounded nonlinearities. The conditions are simple convex feasibility constraints which can be used to stabilize systems with multi-model uncertainty. Additionally, a method is proposed for obtaining H∞ performance for an approximate model (i.e., describing function) of a sector-bounded nonlinearity. This work also proposes several data-driven methods for designing robust fixed-structure controllers with H∞ performance. One method considers the solution to a non-convex problem, while another method convexifies the problem and implements an iterative algorithm to obtain the local solution (which can also consider H2 performance). The effectiveness of the proposed method(s) is illustrated by considering several case studies that require robust controllers for achieving the desired performance. The main applicative work in this dissertation is with respect to a power converter control system at the European Organization for Nuclear Research (CERN) (which is used to control the current in a magnet to produce the desired field in controlling particle trajectories in accelerators). The proposed design methods are implemented in order to satisfy the challenging performance specifications set by the application while guaranteeing the system stability and robustness using data-driven design strategies
    corecore