842 research outputs found

    A Graph Rewriting Approach for Transformational Design of Digital Systems

    Get PDF
    Transformational design integrates design and verification. It combines “correctness by construction” and design creativity by the use of pre-proven behaviour preserving transformations as design steps. The formal aspects of this methodology are hidden in the transformations. A constraint is the availability of a design representation with a compositional formal semantics. Graph representations are useful design representations because of their visualisation of design information. In this paper graph rewriting theory, as developed in the last twenty years in mathematics, is shown to be a useful basis for a formal framework for transformational design. The semantic aspects of graphs which are no part of graph rewriting theory are included by the use of attributed graphs. The used attribute algebra, table algebra, is a relation algebra derived from database theory. The combination of graph rewriting, table algebra and transformational design is new

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    A Bigraphical Vending Machine as a Webservice: From Specification and Analysis to Implementation using the Bigraph Toolkit Suite

    Get PDF
    A bigraph-driven vending machine is implemented. The application is realized as a Spring-based webservice. Actions can be initiated by REST endpoints. The system follows a rule-based architecture, where possible operations are grounded on a rule set. Bigraphical Reactive Systems are used for the specification and execution. The actual state of the application is a bigraph stored in a database, which can be viewed and altered directly in the database. A history of states is kept - the application can be transferred to any prior state. The application can be updated or extended by merely changing the bigraphical database model.:First Part: A system of a vending machine is specified and analyzed using BDSL. This concerns the static and dynamic aspects of the system. Second Part: The analysis results are re-used for the implementation using Bigraph Framework. The application is realized as a webservice that is built using the Spring framework.Ein bigraph-gesteuerter Verkaufsautomat wird implementiert. Die Anwendung ist als Spring-basierter Webservice realisiert. Aktionen können über REST-Endpunkte initiiert werden. Das System folgt einer regelbasierten Architektur, bei der die möglichen Operationen auf einem Regelsatz beruhen. Für die Spezifikation und Ausführung werden Bigraphical Reactive Systems verwendet. Der aktuelle Zustand der Anwendung ist ein in einer Datenbank gespeicherter Bigraph, der direkt in der Datenbank eingesehen und verändert werden kann. Es wird eine Historie der Zustände geführt - die Anwendung kann in einen beliebigen früheren Zustand überführt werden. Die Anwendung kann aktualisiert oder erweitert werden, indem lediglich das bigraphische Datenbankmodell geändert wird.:First Part: A system of a vending machine is specified and analyzed using BDSL. This concerns the static and dynamic aspects of the system. Second Part: The analysis results are re-used for the implementation using Bigraph Framework. The application is realized as a webservice that is built using the Spring framework

    A short overview of Hidden Logic

    Get PDF
    In this paper we review a hidden (sorted) generalization of k-deductive systems - hidden k-logics. They encompass deductive systems as well as hidden equational logics and inequational logics. The special case of hidden equational logics has been used to specify and to verify properties in program development of behavioral systems within the dichotomy visible vs. hidden data. We recall one of the main applications of this work - the study of behavioral equivalence. Related results are obtained through combinatorial properties of the Leibniz congruence relation. In addition we obtain a few new developments concerning hidden equational logic, namely we present a new characterization of the behavioral consequences of a theory

    Nested Term Graphs (Work In Progress)

    Full text link
    We report on work in progress on 'nested term graphs' for formalizing higher-order terms (e.g. finite or infinite lambda-terms), including those expressing recursion (e.g. terms in the lambda-calculus with letrec). The idea is to represent the nested scope structure of a higher-order term by a nested structure of term graphs. Based on a signature that is partitioned into atomic and nested function symbols, we define nested term graphs both in a functional representation, as tree-like recursive graph specifications that associate nested symbols with usual term graphs, and in a structural representation, as enriched term graph structures. These definitions induce corresponding notions of bisimulation between nested term graphs. Our main result states that nested term graphs can be implemented faithfully by first-order term graphs. keywords: higher-order term graphs, context-free grammars, cyclic lambda-terms, higher-order rewrite systemsComment: In Proceedings TERMGRAPH 2014, arXiv:1505.0681

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Semantic Component Composition

    Full text link
    Building complex software systems necessitates the use of component-based architectures. In theory, of the set of components needed for a design, only some small portion of them are "custom"; the rest are reused or refactored existing pieces of software. Unfortunately, this is an idealized situation. Just because two components should work together does not mean that they will work together. The "glue" that holds components together is not just technology. The contracts that bind complex systems together implicitly define more than their explicit type. These "conceptual contracts" describe essential aspects of extra-system semantics: e.g., object models, type systems, data representation, interface action semantics, legal and contractual obligations, and more. Designers and developers spend inordinate amounts of time technologically duct-taping systems to fulfill these conceptual contracts because system-wide semantics have not been rigorously characterized or codified. This paper describes a formal characterization of the problem and discusses an initial implementation of the resulting theoretical system.Comment: 9 pages, submitted to GCSE/SAIG '0

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula
    corecore