191 research outputs found

    Steganalytic Methods for the Detection of Histogram Shifting Data Hiding Schemes

    Get PDF
    Peer-reviewedIn this paper, several steganalytic techniques designed to detect the existence of hidden messages using histogram shifting schemes are presented. Firstly, three techniques to identify specific histogram shifting data hiding schemes, based on detectable visible alterations on the histogram or abnormal statistical distributions, are suggested. Afterwards, a general technique capable of detecting all the analyzed histogram shifting data hiding methods is suggested. This technique is based on the effect of histogram shifting methods on the ¿volatility¿ of the histogram of the difference image. The different behavior of volatility whenever new data are hidden makes it possible to identify stego and cover images

    Robust Lossless Data Hiding by Feature-Based Bit Embedding Algorithm

    Get PDF

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    A Study And Analysis Of Watermarking Algorithms For Medical Images

    Get PDF
    Digital watermarking techniques hide digital data into digital images imperceptibly for different purposes and applications such as copyright protection, authentication, and data hiding. Teknik-teknik pembenaman tera air menyembunyikan data digit ke dalam imej-imej digit untuk pelbagai keperluan dan aplikasi seperti perlindungan hak cipta, pengesahan, dan penyembunyian data

    A Secure Steganographic Algorithm Based on Frequency Domain for the Transmission of Hidden Information

    Get PDF
    This contribution proposes a novel steganographic method based on the compression standard according to the Joint Photographic Expert Group and an Entropy Thresholding technique. The steganographic algorithm uses one public key and one private key to generate a binary sequence of pseudorandom numbers that indicate where the elements of the binary sequence of a secret message will be inserted. The insertion takes eventually place at the first seven AC coefficients in the transformed DCT domain. Before the insertion of the message the image undergoes several transformations. After the insertion the inverse transformations are applied in reverse order to the original transformations. The insertion itself takes only place if an entropy threshold of the corresponding block is satisfied and if the pseudorandom number indicates to do so. The experimental work on the validation of the algorithm consists of the calculation of the peak signal-to-noise ratio (PSNR), the difference and correlation distortion metrics, the histogram analysis, and the relative entropy, comparing the same characteristics for the cover and stego image. The proposed algorithm improves the level of imperceptibility analyzed through the PSNR values. A steganalysis experiment shows that the proposed algorithm is highly resistant against the Chi-square attack

    Reversible data hiding in digital images

    Get PDF
    Nowadays the role of data hiding has become more eminent. The data safety on the Internet is known to be a challenge due to frequent hacker attacks and data tampering during transmission. In addition to encryption schemes, data hiding has an important role in secret message transmission, authentication, and copyright protection. This thesis presents in-depth state-of-the-art data hiding schemes evaluation, and based on the conducted analysis describes the proposed method, which seek the maximum improvement. We utilize a causal predictor and a local activity indicator with two embedding possibilities based on difference expansion and histogram shifting. Moreover, the secret data from Galois field GF(q),q ≤ 2 in order to embed more than one bit per pixel in a single run of the algorithm is considered. We extend our data hiding technique to the transform domain complaint with JPEG coding. In the experimental part, the proposed method is compared with state-of-the-art reversible data hiding schemes on a vast set of test images, where our approach produces better embedding capacity versus image quality performance. We conclude that proposed scheme achieves efficiency in terms of redundancy, which is decreased due to the derived conditions for location map free data embedding, invariability to the choice of predictor, and high payload capacity of more than 1 bit per pixel in a single run of the algorithm
    corecore