482 research outputs found

    Statistical Computing on Non-Linear Spaces for Computational Anatomy

    Get PDF
    International audienceComputational anatomy is an emerging discipline that aims at analyzing and modeling the individual anatomy of organs and their biological variability across a population. However, understanding and modeling the shape of organs is made difficult by the absence of physical models for comparing different subjects, the complexity of shapes, and the high number of degrees of freedom implied. Moreover, the geometric nature of the anatomical features usually extracted raises the need for statistics on objects like curves, surfaces and deformations that do not belong to standard Euclidean spaces. We explain in this chapter how the Riemannian structure can provide a powerful framework to build generic statistical computing tools. We show that few computational tools derive for each Riemannian metric can be used in practice as the basic atoms to build more complex generic algorithms such as interpolation, filtering and anisotropic diffusion on fields of geometric features. This computational framework is illustrated with the analysis of the shape of the scoliotic spine and the modeling of the brain variability from sulcal lines where the results suggest new anatomical findings

    Quantum Loewner Evolution

    Full text link
    What is the scaling limit of diffusion limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the {\em dielectric breakdown model} η\eta-DBM, a generalization of DLA in which particle locations are sampled from the η\eta-th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider η\eta-DBM on random graphs known or believed to converge in law to a Liouville quantum gravity (LQG) surface with parameter γ[0,2]\gamma \in [0,2]. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE(γ2,η)(\gamma^2, \eta). QLE is defined in terms of the radial Loewner equation like radial SLE, except that it is driven by a measure valued diffusion νt\nu_t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of νt\nu_t using an SPDE. For each γ(0,2]\gamma \in (0,2], there are two or three special values of η\eta for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of νt\nu_t. We also explain discrete versions of our construction that relate DLA to loop-erased random walk and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot machine reels) facilitates explicit calculation. We propose QLE(2,1)(2,1) as a scaling limit for DLA on a random spanning-tree-decorated planar map, and QLE(8/3,0)(8/3,0) as a scaling limit for the Eden model on a random triangulation. We propose using QLE(8/3,0)(8/3,0) to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE(8/3,0)(8/3,0), up to a fixed time, as a metric ball in a random metric space.Comment: 132 pages, approximately 100 figures and computer simulation

    Loop constraints: A habitat and their algebra

    Get PDF
    This work introduces a new space \T'_* of `vertex-smooth' states for use in the loop approach to quantum gravity. Such states provide a natural domain for Euclidean Hamiltonian constraint operators of the type introduced by Thiemann (and using certain ideas of Rovelli and Smolin). In particular, such operators map \T'_* into itself, and so are actual operators in this space. Their commutator can be computed on \T'_* and compared with the classical hypersurface deformation algebra. Although the classical Poisson bracket of Hamiltonian constraints yields an inverse metric times an infinitesimal diffeomorphism generator, and despite the fact that the diffeomorphism generator has a well-defined non-trivial action on \T'_*, the commutator of quantum constraints vanishes identically for a large class of proposals.Comment: 30 pages RevTex, 2 figures include

    Quantum Loewner evolution

    Get PDF
    What is the scaling limit of diffusion-limited aggregation (DLA) in the plane? This is an old and famously difficult question. One can generalize the question in two ways: first, one may consider the dielectric breakdown model η-DBM, a generalization of DLA in which particle locations are sampled from the η th power of harmonic measure, instead of harmonic measure itself. Second, instead of restricting attention to deterministic lattices, one may consider η-DBM on random graphs known or believed to conve rge in law to a Liouville quantum gravity (LQG) surface with parameter γ e [0,2]. In this generality, we propose a scaling limit candidate called quantum Loewner evolution, QLE(γ 2 ,η). QLE is defined in terms of the radial Loewner equation like radial stochastic Loewner evolution, except that it is driven by a measure-valued diffusion v t derived from LQG rather than a multiple of a standard Brownian motion. We formalize the dynamics of v t using a stochastic partial differential equation. For each γ e [0, 2], there are two or three special values of η for which we establish the existence of a solution to these dynamics and explicitly describe the stationary law of v t . We also explain discrete versions of our construction that relate DLA to loop-erased random walks and the Eden model to percolation. A certain "reshuffling" trick (in which concentric annular regions are rotated randomly, like slot-machine reels) facilitates explicit calculation. We propose QLE(2, 1) as a scaling limit for DLA on a random spanning-tree-decorated planar map and QLE(8/3, 0) as a scaling limit for the Eden model on a random triangulation. We propose using QLE(8/3, 0) to endow pure LQG with a distance function, by interpreting the region explored by a branching variant of QLE(8/3, 0), up to a fixed time, as a metric ball in a random metric space

    Auxetic Deformations and Elliptic Curves

    Get PDF
    The problem of detecting auxetic behavior, originating in materials science and mathematical crystallography, refers to the property of a flexible periodic bar-and-joint framework to widen, rather than shrink, when stretched in some direction. The only known algorithmic solution for detecting infinitesimal auxeticity is based on the rather heavy machinery of fixed-dimension semi-definite programming. In this paper we present a new, simpler algorithmic approach which is applicable to a natural family of 3D periodic bar-and-joint frameworks with 3 degrees-of-freedom. This class includes most zeolite structures, which are important for applications in computational materials science. We show that the existence of auxetic deformations is related to properties of an associated elliptic curve. A fast algorithm for recognizing auxetic capabilities is obtained via the classical Aronhold invariants of the cubic form defining the curve

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    On the Topological Characterization of Near Force-Free Magnetic Fields, and the work of late-onset visually-impaired Topologists

    Get PDF
    The Giroux correspondence and the notion of a near force-free magnetic field are used to topologically characterize near force-free magnetic fields which describe a variety of physical processes, including plasma equilibrium. As a byproduct, the topological characterization of force-free magnetic fields associated with current-carrying links, as conjectured by Crager and Kotiuga, is shown to be necessary and conditions for sufficiency are given. Along the way a paradox is exposed: The seemingly unintuitive mathematical tools, often associated to higher dimensional topology, have their origins in three dimensional contexts but in the hands of late-onset visually impaired topologists. This paradox was previously exposed in the context of algorithms for the visualization of three-dimensional magnetic fields. For this reason, the paper concludes by developing connections between mathematics and cognitive science in this specific context.Comment: 20 pages, no figures, a paper which was presented at a conference in honor of the 60th birthdays of Alberto Valli and Paolo Secci. The current preprint is from December 2014; it has been submitted to an AIMS journa
    corecore