4,768 research outputs found

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Supporting Complex Scientific Database Schemas in a Grid Middleware

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/AINA.2009.129The volume of digital scientific data has increased considerably with advancing technologies of computing devices and scientific instruments. We are exploring the use of emerging Grid technologies for the management and manipulation of very large distributed scientific datasets. Taking as an example a terabyte-size scientific database with complex database schema, this paper focuses on the potential of a well-known Grid middleware - OGSA-DQP - for distributing such datasets. In particular, we investigate and extend the data type support in this system to handle a complex schema of a real scientific database - the Sloan Digital Sky Survey database

    Memory aware query scheduling in a database cluster

    Get PDF
    Query throughput is one of the primary optimization goals in interactive web-based information systems in order to achieve the performance necessary to serve large user communities. Queries in this application domain differ significantly from those in traditional database applications: they are of lower complexity and almost exclusively read-only. The architecture we propose here is specifically tailored to take advantage of the query characteristics. It is based on a large parallel shared-nothing database cluster where each node runs a separate server with a fully replicated copy of the database. A query is assigned and entirely executed on one single node avoiding network contention or synchronization effects. However, the actual key to enhanced throughput is a resource efficient scheduling of the arriving queries. We develop a simple and robust scheduling scheme that takes the currently memory resident data at each server into account and trades off memory re-use and execution time, reordering queries as necessary. Our experimental evaluation demonstrates the effectiveness when scaling the system beyond hundreds of nodes showing super-linear speedup
    corecore