1,476 research outputs found

    An efficient scheduling method for grid systems based on a hierarchical stochastic petri net

    Full text link
    This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min

    Building a MultiAgent System from a User Workflow Specification

    Get PDF
    This paper provides a methodology to build a MultiAgent System (MAS) described in terms of interactive components from a domain-specic User Workow Specication (UWS). We use a Petri nets-based notation to describe workow specications. This, besides using a familiar and well-studied notation, guarantees an highlevel of description and independence with more concrete vendor-specic process denition languages. In order to bridge the gap between workow specications and MASs, we exploit other intermediate Petri nets-based notations. Transformation rules are given to translate a notation to another. The generated agent-based application implements the original workow specication. Run-time support is provided by a middleware suitable for the execution of the generated code

    Petri Net as a Manufacturing System Scheduling Tool

    Get PDF

    Algebraic Models for Contextual Nets

    No full text
    We extend the algebraic approach of Meseguer and Montanari from ordinary place/transition Petri nets to contextual nets, covering both the collective and the individual token philosophy uniformly along the two interpretations of net behaviors
    • …
    corecore