1,214 research outputs found

    Exploring the benefit of rerouting multi-period traffic to multi-site data centers

    Get PDF
    In cloud-like scenarios, demand is served at one of multiple possible data center (DC) destinations. Usually, the exact DC that is used can be freely chosen, which leads to an anycast routing problem. Furthermore, the demand volume is expected to change over time, e.g., following a diurnal pattern. Given that virtually all application domains today rely heavily on cloud-like services, it is important that the backbone networks connecting users to the DCs are resilient against failures. In this paper, we consider the problem of resiliently routing multi-period traffic: we need to find routes to both a primary DC and a backup DC (to be used in the case of failure of the primary one, or of the network connection to it), and also account for synchronization traffic between the primary and backup DCs. We formulate this as an optimization problem and adopt column generation, using a path formulation in two sub-problems: the (restricted) master problem selects "configurations" to use for each demand in each of the time epochs it lasts, while the pricing problem (PP) constructs a new "configuration" that can lead to lower overall costs (which we express as the number of network resources, i.e., bandwidth, required to serve the demand). Here, a "configuration" is defined by the network paths followed from the demand source to each of the two selected DCs, as well as that of the synchronization traffic in between the DCs. Our decomposition allows for PPs to be solved in parallel, for which we quantitatively explore the reduction in the time required to solve the overall routing problem. The key question that we address with our model is an exploration of the potential benefits of rerouting traffic from one time epoch to the next: we compare several (re) routing strategies, allowing traffic that spans multiple time periods to i) not be rerouted in different periods, ii) only change the backup DC and routes, or iii) freely change both primary and backup DC choices and the routes toward them

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Resilient network dimensioning for optical grid/clouds using relocation

    Get PDF
    In this paper we address the problem of dimensioning infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We will provide an overview of our work in this area, and in particular focus on how to design the resulting grid/cloud to be resilient against network link and/or server site failures. To this end, we will exploit relocation: under failure conditions, a request may be sent to an alternate destination than the one under failure-free conditions. We will provide a comprehensive overview of related work in this area, and focus in some detail on our own most recent work. The latter comprises a case study where traffic has a known origin, but we assume a degree of freedom as to where its end up being processed, which is typically the case for e. g., grid applications of the bag-of-tasks (BoT) type or for providing cloud services. In particular, we will provide in this paper a new integer linear programming (ILP) formulation to solve the resilient grid/cloud dimensioning problem using failure-dependent backup routes. Our algorithm will simultaneously decide on server and network capacity. We find that in the anycast routing problem we address, the benefit of using failure-dependent (FD) rerouting is limited compared to failure-independent (FID) backup routing. We confirm our earlier findings in terms of network capacity savings achieved by relocation compared to not exploiting relocation (order of 6-10% in the current case studies)

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Get PDF
    Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Rerouting Technique for Faster Restoration of Preempted Calls

    Get PDF
    In a communication network where resources are shared between instantaneous request (IR) and book-ahead (BA) connections, activation of future BA connections causes preemption of many on-going IR connections upon resource scarcity. A solution to this problem is to reroute the preempted calls via alternative feasible paths, which often does not ensure acceptably low disruption of service. In this paper, a new rerouting strategy is proposed that uses the destination node to initiate the rerouting and thereby reduces the rerouting time, which ultimately improves the service disruption time. Simulations on a widely used network topology suggest that the proposed rerouting scheme achieves more successful rerouting rate with lower service disruption time, while not compromising other network performance metrics like utilization and call blocking rate
    • …
    corecore