14,033 research outputs found

    On the similarity relation within fuzzy ontology components

    Get PDF
    Ontology reuse is an important research issue. Ontology merging, integration, mapping, alignment and versioning are some of its subprocesses. A considerable research work has been conducted on them. One common issue to these subprocesses is the problem of defining similarity relations among ontologies components. Crisp ontologies become less suitable in all domains in which the concepts to be represented have vague, uncertain and imprecise definitions. Fuzzy ontologies are developed to cope with these aspects. They are equally concerned with the problem of ontology reuse. Defining similarity relations within fuzzy context may be realized basing on the linguistic similarity among ontologies components or may be deduced from their intentional definitions. The latter approach needs to be dealt with differently in crisp and fuzzy ontologies. This is the scope of this paper.ou

    Fuzzy Logic in Clinical Practice Decision Support Systems

    Get PDF
    Computerized clinical guidelines can provide significant benefits to health outcomes and costs, however, their effective implementation presents significant problems. Vagueness and ambiguity inherent in natural (textual) clinical guidelines is not readily amenable to formulating automated alerts or advice. Fuzzy logic allows us to formalize the treatment of vagueness in a decision support architecture. This paper discusses sources of fuzziness in clinical practice guidelines. We consider how fuzzy logic can be applied and give a set of heuristics for the clinical guideline knowledge engineer for addressing uncertainty in practice guidelines. We describe the specific applicability of fuzzy logic to the decision support behavior of Care Plan On-Line, an intranet-based chronic care planning system for General Practitioners

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    An experimental methodology for a fuzzy set preference model

    Get PDF
    A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems

    Soft ranking in clustering

    Get PDF
    Due to the diffusion of large-dimensional data sets (e.g., in DNA microarray or document organization and retrieval applications), there is a growing interest in clustering methods based on a proximity matrix. These have the advantage of being based on a data structure whose size only depends on cardinality, not dimensionality. In this paper, we propose a clustering technique based on fuzzy ranks. The use of ranks helps to overcome several issues of large-dimensional data sets, whereas the fuzzy formulation is useful in encoding the information contained in the smallest entries of the proximity matrix. Comparative experiments are presented, using several standard hierarchical clustering techniques as a reference

    Valuation of real estate investments through Fuzzy Logic

    Get PDF
    This paper aims to outline the application of Fuzzy Logic in real estate investment. In literature, there is a wide theoretical background on real estate investment decisions, but there has been a lack of empirical support in this regard. For this reason, the paper would fill the gap between theory and practice. The fuzzy logic system is adopted to evaluate the situations of a real estate market with imprecise and vague information. To highlight the applicability of the Possibility Theory, we proceeded to reconsider an example of property investment evaluation through fuzzy logic. The case study concerns the purchase of an office building. The results obtained with Fuzzy Logic have been also compared with those arising from a deterministic approach through the use of crisp numbers
    corecore