108,107 research outputs found

    On Repetitive Scenario Design

    Get PDF
    Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses NN scenarios (design samples), followed by randomized feasibility phase that uses NoN_o test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of NN, NoN_o, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number NN of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high NN. Other possibilities along the tradeoff curve use lower NN values, but possibly require more than one repetition

    Repetitive Scenario Design

    Get PDF
    Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses N scenarios (design samples), followed by randomized feasibility phase that uses No test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of N, No, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number N of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high N. Other possibilities along the tradeoff curve use lower N values, but possibly require more than one repetition

    Learning position controls for hybrid step motors: from current-fed to full-order models

    Get PDF
    The experimental comparison of two different global learning position controls (namely, ‘adaptive learning’ and ‘repetitive learning’ controls) for hybrid step motors performing repetitive tasks has been recently presented in the literature. Related benefits and drawbacks have been successfully analyzed on the same robotic application. However, the design of the two aforementioned learning controls - though relying on a rigorous stability analysis - are based on a simplified current-fed model of the motor. They cannot achieve precise current tracking due to the mere presence of PI control actions in the outer current control loops. The aim of this paper is to enrich and update the results of the above comparison in the light of the latest contributions that generalize the theoretical design to the fullorder voltage-fed motor models of hybrid step motors. Learning actions are now included in the outer current control loops: they generalize the corresponding PI actions to the periodic scenario and allow to solve a control problem whose solution was seeming very difficult to be obtained

    RaidEnv: Exploring New Challenges in Automated Content Balancing for Boss Raid Games

    Full text link
    The balance of game content significantly impacts the gaming experience. Unbalanced game content diminishes engagement or increases frustration because of repetitive failure. Although game designers intend to adjust the difficulty of game content, this is a repetitive, labor-intensive, and challenging process, especially for commercial-level games with extensive content. To address this issue, the game research community has explored automated game balancing using artificial intelligence (AI) techniques. However, previous studies have focused on limited game content and did not consider the importance of the generalization ability of playtesting agents when encountering content changes. In this study, we propose RaidEnv, a new game simulator that includes diverse and customizable content for the boss raid scenario in MMORPG games. Additionally, we design two benchmarks for the boss raid scenario that can aid in the practical application of game AI. These benchmarks address two open problems in automatic content balancing, and we introduce two evaluation metrics to provide guidance for AI in automatic content balancing. This novel game research platform expands the frontiers of automatic game balancing problems and offers a framework within a realistic game production pipeline.Comment: 14 pages, 6 figures, 6 tables, 2 algorithm

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    This Time It's Personal: from PIM to the Perfect Digital Assistant

    No full text
    Interacting with digital PIM tools like calendars, to-do lists, address books, bookmarks and so on, is a highly manual, often repetitive and frequently tedious process. Despite increases in memory and processor power over the past two decades of personal computing, not much has changed in the way we engage with such applications. We must still manually decompose frequently performed tasks into multiple smaller, data specific processes if we want to be able to recall or reuse the information in some meaningful way. "Meeting with Yves at 5 in Stata about blah" breaks down into rigid, fixed semantics in separate applications: data to be recorded in calendar fields, address book fields and, as for the blah, something that does not necessarily exist as a PIM application data structure. We argue that a reason Personal Information Management tools may be so manual, and so effectively fragmented, is that they are not personal enough. If our information systems were more personal, that is, if they knew in a manner similar to the way a personal assistant would know us and support us, then our tools would be more helpful: an assistive PIM tool would gather together the necessary material in support of our meeting with Yves. We, therefore, have been investigating the possible paths towards PIM tools as tools that work for us, rather than tools that seemingly make us work for them. To that end, in the following sections we consider how we may develop a framework for PIM tools as "perfect digital assistants" (PDA). Our impetus has been to explore how, by considering the affordances of a Real World personal assistant, we can conceptualize a design framework, and from there a development program for a digital simulacrum of such an assistant that is not for some far off future, but for the much nearer term

    Frequency Analysis of a 64x64 Pixel Retinomorphic System with AER Output to Estimate the Limits to Apply onto Specific Mechanical Environment

    Get PDF
    The rods and cones of a human retina are constantly sensing and transmitting the light in the form of spikes to the cortex of the brain in order to reproduce an image in the brain. Delbruck’s lab has designed and manufactured several generations of spike based image sensors that mimic the human retina. In this paper we present an exhaustive timing analysis of the Address-Event- Representation (AER) output of a 64x64 pixels silicon retinomorphic system. Two different scenarios are presented in order to achieve the maximum frequency of light changes for a pixel sensor and the maximum frequency of requested directions on the output AER. Results obtained are 100 Hz and 1.66 MHz in each case respectively. We have tested the upper spin limit and found it to be approximately 6000rpm (revolutions per minute) and in some cases with high light contrast lost events do not exist.Ministerio de Ciencia e Innovación TEC2009-10639- C04-0
    • …
    corecore