3,135 research outputs found

    Searching with Measurement Dependent Noise

    Full text link
    Consider a target moving with a constant velocity on a unit-circumference circle, starting from an arbitrary location. To acquire the target, any region of the circle can be probed for its presence, but the associated measurement noise increases with the size of the probed region. We are interested in the expected time required to find the target to within some given resolution and error probability. For a known velocity, we characterize the optimal tradeoff between time and resolution (i.e., maximal rate), and show that in contrast to the case of constant measurement noise, measurement dependent noise incurs a multiplicative gap between adaptive search and non-adaptive search. Moreover, our adaptive scheme attains the optimal rate-reliability tradeoff. We further show that for optimal non-adaptive search, accounting for an unknown velocity incurs a factor of two in rate.Comment: Information Theory Workshop (ITW) 201

    Error Correcting Codes for Distributed Control

    Get PDF
    The problem of stabilizing an unstable plant over a noisy communication link is an increasingly important one that arises in applications of networked control systems. Although the work of Schulman and Sahai over the past two decades, and their development of the notions of "tree codes"\phantom{} and "anytime capacity", provides the theoretical framework for studying such problems, there has been scant practical progress in this area because explicit constructions of tree codes with efficient encoding and decoding did not exist. To stabilize an unstable plant driven by bounded noise over a noisy channel one needs real-time encoding and real-time decoding and a reliability which increases exponentially with decoding delay, which is what tree codes guarantee. We prove that linear tree codes occur with high probability and, for erasure channels, give an explicit construction with an expected decoding complexity that is constant per time instant. We give novel sufficient conditions on the rate and reliability required of the tree codes to stabilize vector plants and argue that they are asymptotically tight. This work takes an important step towards controlling plants over noisy channels, and we demonstrate the efficacy of the method through several examples.Comment: 39 page

    On the Error Exponents of ARQ Channels with Deadlines

    Full text link
    We consider communication over Automatic Repeat reQuest (ARQ) memoryless channels with deadlines. In particular, an upper bound L is imposed on the maximum number of ARQ transmission rounds. In this setup, it is shown that incremental redundancy ARQ outperforms Forney's memoryless decoding in terms of the achievable error exponents.Comment: 16 pages, 6 figures, Submitted to the IEEE Trans. on Information Theor
    • …
    corecore